
Omer  
Shlomovits

1

Minimal Design for 
Decentralized Wallet



No single point of failure
Move of assets (signing) cannot happen without Owner 
approval
Recovery is possible at all times
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Motivation
Imagine we had a private key management system where: 



Rick Morty

Our Heroes
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The Journey 

KMS

Mixed Model

TMOVE

Verifiable Social 
Recovery
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Key Management System 

Three main functionalities in the context of blockchains: 

Key generation and custody  

Signatures 

Key backup and recovery 
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Problem: Key Management is hard 
Side channel attacks


social engineering 
attacks


 human errors


etc…
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Trusted Party to the rescue? 
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Trusted Party to the rescue? 
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Trusted Party to the rescue? 

How can we optimize on keys security without 
compromising on keys usability ?
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From single to distributed keys  

Enter threshold cryptography 

Given n parties, we divide the key management 
responsibilities  

Distributed key generation  
Signing requires cooperation of t out of n   

Efficient protocols exists 
Threshold ECDSA [GG18, DKLS18, LNR18]
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https://github.com/KZen-networks



Sounds a lot like 
Multisig to me
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Multisig vs Threshold Signing

Max number of parties 
Interactiveness 
Rotation 
Access policy privacy  
Chain support  
Low cost   
Efficiency (communication/ computation)
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https://medium.com/kzen-networks/threshold-signatures-private-key-the-next-generation-f27b30793b



Multisig vs Threshold Signing

M ax number of parties 
I nteractiveness 
R otation 
A ccess policy privacy  
C hain support  
L ow cost   
E fficiency (communication/ computation)
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https://medium.com/kzen-networks/threshold-signatures-private-key-the-next-generation-f27b30793b



Mixed Model
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Roles 
Owner x 1
Service Providers

17

Mixed Model



Mixed Model{t=n=2}

Roles 
Owner x 1
Service Providers x 1
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Mixed Model{t=n=2}

Roles 
Owner x 1
Service Providers x 1

System Requirements 
No single point of failure
Move of assets (signing) cannot happen without Owner 
approval
Recovery is possible at all times ?
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Choosing Parameters {t,n}

Depends on the adversary model and specific use 
case different access structures can be considered  

Axiom: assuming SP is motivated solely by 
Economical Gain, We cannot avoid the Recovery 
problem 

Fact: two-party protocols are simpler than multi-
party protocols
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Recovery in Mixed 
Model{t=n=2}
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Recovery in Mixed 
Model{t=n=2}

Recovery in the two party setting can mean: 

Self recovery: Owner’s secret share 

Counter party recovery: SP secret share

sk = f( , )
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SP Owner



Recovery in Mixed 
Model{t=n=2}

Owner self-recovery reduces to classical 
backup
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Owner

Cloud/
paper/
etc..



Recovery in Mixed 
Model{t=n=2}

Owner self-recovery reduces to classical 
backup 

 Assuming Authentication:
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SP Owner

Cloud



Recovery in Mixed 
Model{t=n=2}

Recovery in the two party setting can mean: 

Self recovery: Owner’s secret share 
Counter party recovery: SP secret share 

How can the Owner recover if SP goes offline / hacked / becomes 
malicious ? 
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sk = f( , )

SP Owner



Recovery of Counter Party Secret
How can we recover Counter secret share if SP goes offline / 
hacked / becomes malicious ?  
Under certain assumptions this can be done easily. 

Escrow service that is triggered to release SP secret share 
once SP is not sending a life signal for a certain period of time

Escrow

sk = f( , )

SP Owner



general idea: 
If enough Owners collaborate, they each get to recover their 
Counter party secret share at the same time

Recovery of Counter Party Secret

. . .     . . .
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SP

Owner_1 Owner_2 Owner_n

. . .     . . .



general idea: 
If enough Owners collaborate, they each get to recover their 
Counter party secret share at the same time

Recovery of Counter Party Secret

. . .     . . .
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TMOVE



general idea: 
If enough Owners collaborate, they each get to recover their 
Counter party secret share at the same time

Recovery of Counter Party Secret

. . .     . . .

Owner_1 Owner_2 Owner_n

. . .     . . .



Background: PVSS [S99]
Publicly Verifiable Secret Sharing
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Background: PVSS

Distribution 

Publicly Verifiable Secret Sharing
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Background: PVSS

public proofs : A dealer cannot send 
incorrect shares 

Publicly Verifiable Secret Sharing
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Background: PVSS

Reconstruction: t out of n

Publicly Verifiable Secret Sharing
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Background: PVSS

Public proofs: Participants cannot 
submit incorrect shares 

Publicly Verifiable Secret Sharing
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Background: DLog VE [CS03]
Verifiable Encryption of Discrete Log
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Verifiable Encryption of Discrete Log

{x, ω} ∈ Rdlog

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

Background: DLog VE [CS03]36
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Verifiable Encryption of Discrete Log
{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

c, π ← Enc⋆(ω, pkm) 1/0 ← V(c, π, x, pkm)

Background: DLog VE [CS03]

{x, ω} ∈ Rdlog
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Verifiable Encryption of Discrete Log
{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

c, π ← Enc⋆(ω, pkm) 1/0 ← V(c, π, x, pkm)

ω ← Dec⋆(c, skm)

Background: DLog VE [CS03]

{x, ω} ∈ Rdlog
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TVE
Threshold Verifiable Encryption 
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TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

{x, ω} ∈ Rdlog
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TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

1/0 ← V(c, π, x, pkm)

{x, ω} ∈ Rdlog
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TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

PVSS::distribute 

1/0 ← V(c, π, x, pkm)
{πdi

}n
1

{x, ω} ∈ Rdlog
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TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

1/0 ← V(c, π, x, pkm)
{πdi

}n
1

PVSS::reconstruct

{πri
}t

1

{x, ω} ∈ Rdlog
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TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

1/0 ← V(c, π, x, pkm)
{πdi

}n
1 {πri

}t
1

ω ← Dec⋆(c, skm, {ssi}t
1, Dec)

{x, ω} ∈ Rdlog
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TMOVE
Threshold Multiple Output Verifiable Encryption 
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TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn
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{x, ω} ∈ Rdlog
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TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn

. 

. 

.

{ci}n
1, π ← Enc⋆({ωi}n

1, {pki}n
1)

1/0 ← V({ci}n
1, π, x, {pki}n

1)

{x, ω} ∈ Rdlog
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TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn

. 

. 

.

{ci}n
1, π ← Enc⋆({ωi}n

1, {pki}n
1)

1/0 ← V({ci}n
1, π, x, {pki}n

1)

PVSS::distribute  

{{πdij
}n

i=1}
m
j=1

{x, ω} ∈ Rdlog
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TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}
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{x, ω} ∈ Rdlog
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TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}
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pk2

pkn

. 

. 

.

{ci}n
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TMOVE Properties

TVE per party 

Gradual release (up to one segment)
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TMOVE Properties

TVE per party 

Gradual release (up to one segment)
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TMOVE Instantiation
Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal) :
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EncY(ω) = {C1, C2} = { + rY, rG}ωG

Additively-Homomorphism: (B1, B2) = {ωG + rY, rG}
(C1, C2) = {aG + sY, sG}

(D1, D2) = {(a + ω)G + (r + s)Y, (r + s)G}

+

=



Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal):

C1[i, j] = [ωi]jG + αj pki

We do the following for party  and PVSS secret      :i αj

TMOVE Instantiation
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Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal) :

C1[i, j] = [ωi]jG + αj pki

Verifiable Encryption: ZK proof that             is an encryption of a small 
witness segment under public key of party    with randomness equal to 

We do the following for party  and PVSS secret      :i αj

C1[i, j]
i αj

TMOVE Instantiation
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EncY(ω) = {C1, C2} = { + rY, rG}ωG



Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal) :

C1[i, j] = [ωi]jG + αj pki

Verifiable Encryption: ZK proof that             is an encryption of a small 
witness segment under public key of party    with randomness equal to 

We do the following for party  and PVSS secret      :i αj

C1[i, j]
i αj

Gradual release:     are reconstructed one at a time such that at any given 
moment the difference between parties is no more than one encrypted segment 

αj

TMOVE Instantiation
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ωGEncY(ω) = {C1, C2} = { + rY, rG}



Verifiable Social Recovery via 
TMOVEService 

Provider Owner i
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Verifiable Social Recovery via 
TMOVEService 

Provider Owner i

2P keyGen
smsr
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sk = f(sr, sm)



Verifiable Social Recovery via 
TMOVEService 

Provider Owner i

TMOVE::encrypt(  )

smsr

TMOVE::distribute::party(i)

sr

2P keyGen
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Verifiable Social Recovery via 
TMOVE/ part2

sm
… …
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Verifiable Social Recovery via 
TMOVE/ part2

sm

… …

TMOVE::reconstruct

{αj}m
1{αj}m

1{αj}m
1
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Verifiable Social Recovery via 
TMOVE/ part2

sm
… …

TMOVE::decrypt::party(i)

sr

66

sk = f(sr, sm)

{αj}m
1 {αj}m

1 {αj}m
1



Mixed Model{t=n=2}

Roles 
Owner x 1
Service Providers x 1

System Requirements 
No single point of failure
Move of assets (signing) cannot happen without Owner 
approval
Recovery is possible at all times ?
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The Journey 

KMS

TMOVE

69

1 owner, 1 sp. 
No single point of failure 

Key management is hard. 

Threshold multiple output verifiable encryption 

Trust that other users in the  
same situation will act rationally  

Verifiable Social 
Recovery

Mixed Model
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https://github.com/KZen-networks



Practical Considerations

One SP can handle millions of Owners 
Owners can join the service Asynchronously 
Owners of the same SP must have similar 
stake in the system 
PKI: Owners of the same SP must know each 
other public key (blockchain pk’s are good) 
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