
Omer  
Shlomovits

1

Minimal Design for 
Decentralized Wallet



No single point of failure
Move of assets (signing) cannot happen without Owner 
approval
Recovery is possible at all times

2

Motivation
Imagine we had a private key management system where: 



Rick Morty

Our Heroes

3



The Journey 

KMS

Mixed Model

TMOVE

Verifiable Social 
Recovery

4



Key Management System 

Three main functionalities in the context of blockchains: 

Key generation and custody  

Signatures 

Key backup and recovery 

5



Problem: Key Management is hard 
Side channel attacks


social engineering 
attacks


 human errors


etc…

6



Trusted Party to the rescue? 
7



Trusted Party to the rescue? 
8



Trusted Party to the rescue? 

How can we optimize on keys security without 
compromising on keys usability ?

9



From single to distributed keys  

Enter threshold cryptography 

Given n parties, we divide the key management 
responsibilities  

Distributed key generation  
Signing requires cooperation of t out of n   

Efficient protocols exists 
Threshold ECDSA [GG18, DKLS18, LNR18]

10



From single to distributed keys  

Enter threshold cryptography 

Given n parties, we divide the key management 
responsibilities  

Distributed key generation  
Signing requires cooperation of t out of n   

Efficient protocols exists 
Threshold ECDSA [GG18, DKLS18, LNR18]

11



From single to distributed keys  

Enter threshold cryptography 

Given n parties, we divide the key management 
responsibilities  

Distributed key generation  
Signing requires cooperation of t out of n   

Efficient protocols exists 
Threshold ECDSA [GG18, DKLS18, LNR18]

12

https://github.com/KZen-networks



Sounds a lot like 
Multisig to me

13



Multisig vs Threshold Signing

Max number of parties 
Interactiveness 
Rotation 
Access policy privacy  
Chain support  
Low cost   
Efficiency (communication/ computation)

14

https://medium.com/kzen-networks/threshold-signatures-private-key-the-next-generation-f27b30793b



Multisig vs Threshold Signing

M ax number of parties 
I nteractiveness 
R otation 
A ccess policy privacy  
C hain support  
L ow cost   
E fficiency (communication/ computation)

15

https://medium.com/kzen-networks/threshold-signatures-private-key-the-next-generation-f27b30793b



Mixed Model
16



Roles 
Owner x 1
Service Providers

17

Mixed Model



Mixed Model{t=n=2}

Roles 
Owner x 1
Service Providers x 1

18



Mixed Model{t=n=2}

Roles 
Owner x 1
Service Providers x 1

System Requirements 
No single point of failure
Move of assets (signing) cannot happen without Owner 
approval
Recovery is possible at all times ?

19



Choosing Parameters {t,n}

Depends on the adversary model and specific use 
case different access structures can be considered  

Axiom: assuming SP is motivated solely by 
Economical Gain, We cannot avoid the Recovery 
problem 

Fact: two-party protocols are simpler than multi-
party protocols

20



Recovery in Mixed 
Model{t=n=2}

21



Recovery in Mixed 
Model{t=n=2}

Recovery in the two party setting can mean: 

Self recovery: Owner’s secret share 

Counter party recovery: SP secret share

sk = f( , )

22

SP Owner



Recovery in Mixed 
Model{t=n=2}

Owner self-recovery reduces to classical 
backup

23

Owner

Cloud/
paper/
etc..



Recovery in Mixed 
Model{t=n=2}

Owner self-recovery reduces to classical 
backup 

 Assuming Authentication:

24

SP Owner

Cloud



Recovery in Mixed 
Model{t=n=2}

Recovery in the two party setting can mean: 

Self recovery: Owner’s secret share 
Counter party recovery: SP secret share 

How can the Owner recover if SP goes offline / hacked / becomes 
malicious ? 

25

sk = f( , )

SP Owner



Recovery of Counter Party Secret
How can we recover Counter secret share if SP goes offline / 
hacked / becomes malicious ?  
Under certain assumptions this can be done easily. 

Escrow service that is triggered to release SP secret share 
once SP is not sending a life signal for a certain period of time

Escrow

sk = f( , )

SP Owner



general idea: 
If enough Owners collaborate, they each get to recover their 
Counter party secret share at the same time

Recovery of Counter Party Secret

. . .     . . .

27

SP

Owner_1 Owner_2 Owner_n

. . .     . . .



general idea: 
If enough Owners collaborate, they each get to recover their 
Counter party secret share at the same time

Recovery of Counter Party Secret

. . .     . . .

28 Owner_1 Owner_2 Owner_n

. . .     . . .

TMOVE



general idea: 
If enough Owners collaborate, they each get to recover their 
Counter party secret share at the same time

Recovery of Counter Party Secret

. . .     . . .

Owner_1 Owner_2 Owner_n

. . .     . . .



Background: PVSS [S99]
Publicly Verifiable Secret Sharing

30



Background: PVSS

Distribution 

Publicly Verifiable Secret Sharing

s

. 
. 

.

. 
. 

.

pkn

pkn−1

pk2

pk1

ss1

ss2

ssn−1

ssn

Dealer 

31



Background: PVSS

public proofs : A dealer cannot send 
incorrect shares 

Publicly Verifiable Secret Sharing

. 
. 

.

. 
. 

.

pkn

pkn−1

pk2

pk1

ss1

ss2

ssn−1

ssn {πdi
}n

1
s

Dealer 

32



Background: PVSS

Reconstruction: t out of n

Publicly Verifiable Secret Sharing

. 
. 

.

pkt

pkt−1

pk2

pk1

s

Dealer 

s

ss′ t

ss′ t−1

ss′ 2

ss′ 1

33



Background: PVSS

Public proofs: Participants cannot 
submit incorrect shares 

Publicly Verifiable Secret Sharing

. 
. 

.

pkt

pkt−1

Pk2

pk1

s

Dealer 

s

ss′ n

ss′ n−1

ss′ 2

ss′ 1

{πri
}t

1{πdi
}n

1

34



Background: DLog VE [CS03]
Verifiable Encryption of Discrete Log

35



Verifiable Encryption of Discrete Log

{x, ω} ∈ Rdlog

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

Background: DLog VE [CS03]36



Verifiable Encryption of Discrete Log
{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

Background: DLog VE [CS03]

{x, ω} ∈ Rdlog

c, π ← Enc⋆(ω, pkm)

37



Verifiable Encryption of Discrete Log
{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

c, π ← Enc⋆(ω, pkm) 1/0 ← V(c, π, x, pkm)

Background: DLog VE [CS03]

{x, ω} ∈ Rdlog

38



Verifiable Encryption of Discrete Log
{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

c, π ← Enc⋆(ω, pkm) 1/0 ← V(c, π, x, pkm)

ω ← Dec⋆(c, skm)

Background: DLog VE [CS03]

{x, ω} ∈ Rdlog

39



TVE
Threshold Verifiable Encryption 

40



TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

{x, ω} ∈ Rdlog

41



TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

1/0 ← V(c, π, x, pkm)

{x, ω} ∈ Rdlog

42



TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

PVSS::distribute 

1/0 ← V(c, π, x, pkm)
{πdi

}n
1

{x, ω} ∈ Rdlog

43



TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

1/0 ← V(c, π, x, pkm)
{πdi

}n
1

PVSS::reconstruct

{πri
}t

1

{x, ω} ∈ Rdlog

44



TVE
Threshold Verifiable Encryption 

{Gen, Enc, Dec}

{skm, pkm} ← Gen(1n)

pk1

pk2

pkn

. 

. 

.

c, π ← Enc⋆(ω, {pki}n
1, pkm)

1/0 ← V(c, π, x, pkm)
{πdi

}n
1 {πri

}t
1

ω ← Dec⋆(c, skm, {ssi}t
1, Dec)

{x, ω} ∈ Rdlog

45



TMOVE
Threshold Multiple Output Verifiable Encryption 

46



TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn

. 

. 

.

{x, ω} ∈ Rdlog

47



TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn

. 

. 

.

{ci}n
1, π ← Enc⋆({ωi}n

1, {pki}n
1)

1/0 ← V({ci}n
1, π, x, {pki}n

1)

{x, ω} ∈ Rdlog

48



TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn

. 

. 

.

{ci}n
1, π ← Enc⋆({ωi}n

1, {pki}n
1)

1/0 ← V({ci}n
1, π, x, {pki}n

1)

PVSS::distribute  

{{πdij
}n

i=1}
m
j=1

{x, ω} ∈ Rdlog

49



TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn

. 

. 

.

{ci}n
1, π ← Enc⋆({ωi}n

1, {pki}n
1)

1/0 ← V({ci}n
1, π, x, {pki}n

1)
{{πdij

}n
i=1}

m
j=1

PVSS::reconstruct

{{πrij
}tj

i=1}
m
j=1

{x, ω} ∈ Rdlog

50



TMOVE
Threshold Multiple Output Verifiable Encryption 

{Gen, Enc, Dec}

pk1

pk2

pkn

. 

. 

.

{ci}n
1, π ← Enc⋆({ωi}n

1, {pki}n
1)

1/0 ← V({ci}n
1, π, x, {pki}n

1)
{{πdij

}n
i=1}

m
j=1

{{πrij
}tj

i=1}
m
j=1

ωk ← Dec⋆(ck, skk, {{ssi}
tj
i=1}

m
j=1)

{x, ω} ∈ Rdlog

51



TMOVE Properties

TVE per party 

Gradual release (up to one segment)

52

ω1 ω2 ωk ωn−1 ωn

…. ….



TMOVE Properties

TVE per party 

Gradual release (up to one segment)

53

ω1 ω2 ωk ωn−1 ωn

…. ….



TMOVE Properties

TVE per party 

Gradual release (up to one segment)

54

ω1 ω2 ωk ωn−1 ωn

…. ….



TMOVE Properties

TVE per party 

Gradual release (up to one segment)

55

ω1 ω2 ωk ωn−1 ωn

…. ….



TMOVE Properties

TVE per party 

Gradual release (up to one segment)

56

ω1 ω2 ωk ωn−1 ωn

…. ….



TMOVE Instantiation
Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal) :

57

EncY(ω) = {C1, C2} = { + rY, rG}ωG

Additively-Homomorphism: (B1, B2) = {ωG + rY, rG}
(C1, C2) = {aG + sY, sG}

(D1, D2) = {(a + ω)G + (r + s)Y, (r + s)G}

+

=



Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal):

C1[i, j] = [ωi]jG + αj pki

We do the following for party  and PVSS secret      :i αj

TMOVE Instantiation
58

EncY(ω) = {C1, C2} = { + rY, rG}ωG



Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal) :

C1[i, j] = [ωi]jG + αj pki

Verifiable Encryption: ZK proof that             is an encryption of a small 
witness segment under public key of party    with randomness equal to 

We do the following for party  and PVSS secret      :i αj

C1[i, j]
i αj

TMOVE Instantiation
59

EncY(ω) = {C1, C2} = { + rY, rG}ωG



Additive Homomorphic Encryption scheme: ElGamal “in the 
exponent” (homomorphic ElGamal) :

C1[i, j] = [ωi]jG + αj pki

Verifiable Encryption: ZK proof that             is an encryption of a small 
witness segment under public key of party    with randomness equal to 

We do the following for party  and PVSS secret      :i αj

C1[i, j]
i αj

Gradual release:     are reconstructed one at a time such that at any given 
moment the difference between parties is no more than one encrypted segment 

αj

TMOVE Instantiation
60

ωGEncY(ω) = {C1, C2} = { + rY, rG}



Verifiable Social Recovery via 
TMOVEService 

Provider Owner i

61



Verifiable Social Recovery via 
TMOVEService 

Provider Owner i

2P keyGen
smsr

62

sk = f(sr, sm)



Verifiable Social Recovery via 
TMOVEService 

Provider Owner i

TMOVE::encrypt(  )

smsr

TMOVE::distribute::party(i)

sr

2P keyGen

63



Verifiable Social Recovery via 
TMOVE/ part2

sm
… …

64



Verifiable Social Recovery via 
TMOVE/ part2

sm

… …

TMOVE::reconstruct

{αj}m
1{αj}m

1{αj}m
1

65



Verifiable Social Recovery via 
TMOVE/ part2

sm
… …

TMOVE::decrypt::party(i)

sr

66

sk = f(sr, sm)

{αj}m
1 {αj}m

1 {αj}m
1



Mixed Model{t=n=2}

Roles 
Owner x 1
Service Providers x 1

System Requirements 
No single point of failure
Move of assets (signing) cannot happen without Owner 
approval
Recovery is possible at all times ?

67



Mixed Model{t=n=2}

Roles 
Owner x 1
Service Providers x 1

System Requirements 
No single point of failure
Move of assets (signing) cannot happen without Owner 
approval
Recovery is possible at all times

68



The Journey 

KMS

TMOVE

69

1 owner, 1 sp. 
No single point of failure 

Key management is hard. 

Threshold multiple output verifiable encryption 

Trust that other users in the  
same situation will act rationally  

Verifiable Social 
Recovery

Mixed Model



70

https://github.com/KZen-networks



Practical Considerations

One SP can handle millions of Owners 
Owners can join the service Asynchronously 
Owners of the same SP must have similar 
stake in the system 
PKI: Owners of the same SP must know each 
other public key (blockchain pk’s are good) 

71


