Minimal Design for Decentralized Wallet

Omer Shlomovits

Motivation

* Imagine we had a private key management system where:

- No single point of failure
- Move of assets (signing) cannot happen without Owner approval
- Recovery is possible at all times

Our Heroes

The Journey

Key Management System

- * Three main functionalities in the context of blockchains:
 - Key generation and custody
 - Signatures
 - Key backup and recovery

Problem: Key Management is hard

- * Side channel attacks
- social engineering attacks
- human errors
- * etc...

Fake alert created by the attacker (via Electrum GitHub page)

WALLET.FAIL

Poof goes your crypto ...

devops199 commented 22 hours ago • edited

I accidentally killed it.

https://etherscan.io/address/0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4

Trusted Party to the rescue?

Trusted Party to the rescue?

2018: A Record-Breaking Year for **Crypto Exchange** Hacks CoinDesk - 29 Dec 2018

From the number of **cryptocurrency exchange** hacks, to the amount of assets that were stolen, to the largest **exchange hack** of all-time, **crypto** ...

How Hackers Stole \$1B From Cryptocurrency Exchanges In 2018 Forbes - 31 Dec 2018

The methodology behind the biggest **cryptocurrency hack** of the year has never been made public. However, the Japan Times reported at the ...

Trusted Party to the rescue?

2018: A Record-Breaking Year for **Crypto Exchange** Hacks CoinDesk - 29 Dec 2018

From the number of **cryptocurrency exchange** hacks, to the amount of assets that were stolen, to the largest **exchange hack** of all-time, **crypto** ...

How Hackers Stole \$1B From Cryptocurrency Exchanges In 2018 Forbes - 31 Dec 2018

The methodology behind the biggest **cryptocurrency hack** of the year has never been made public. However, the Japan Times reported at the ...

How can we optimize on keys security without compromising on keys usability?

From single to distributed keys

*Enter threshold cryptography

From single to distributed keys

- *Enter threshold cryptography
- *Given n parties, we divide the key management responsibilities
 - Distributed key generation
 - Signing requires cooperation of t out of n

From single to distributed keys

- *Enter threshold cryptography
- *Given n parties, we divide the key management responsibilities
 - Distributed key generation
 - Signing requires cooperation of t out of n
- *Efficient protocols exists
 - ▶ Threshold ECDSA [GG18, DKLS18, LNR18]

Multisig vs Threshold Signing

https://medium.com/kzen-networks/threshold-signatures-private-key-the-next-generation-f27b30793b

- *Max number of parties
- *Interactiveness
- *Rotation
- *Access policy privacy
- *Chain support
- *Low cost
- *Efficiency (communication/computation)

Multisig vs Threshold Signing

https://medium.com/kzen-networks/threshold-signatures-private-key-the-next-generation-f27b30793b

- *M ax number of parties
- *I nteractiveness
- *R otation
- *A ccess policy privacy
- *C hain support
- *Low cost
- * E fficiency (communication/ computation)

Mixed Model

Mixed Model

- * Roles
 - Dwner x 1
 - ▶ Service Providers

$\underline{Mixed\ Model\{t=n=2\}}$

- * Roles
 - Dwner x 1
 - Service Providers x 1

$\underline{Mixed\ Model\{t=n=2\}}$

- * Roles
 - Dwner x 1
 - Service Providers x 1

- * System Requirements
 - Mo single point of failure
 - Move of assets (signing) cannot happen without Owner approval
 - Recovery is possible at all times

Choosing Parameters {t,n}

- *Depends on the adversary model and specific use case different access structures can be considered
- *Axiom: assuming SP is motivated solely by Economical Gain, We cannot avoid the Recovery problem
- *Fact: two-party protocols are simpler than multiparty protocols

- *Recovery in the two party setting can mean:
 - ▶ Self recovery: Owner's secret share
 - ▶ Counter party recovery: SP secret share

*Owner self-recovery reduces to classical backup

- *Owner self-recovery reduces to classical backup
 - Assuming Authentication:

- *Recovery in the two party setting can mean:
 - ▶ Self recovery: Owner's secret share
 - Counter party recovery: SP secret share
 - How can the Owner recover if SP goes offline / hacked / becomes malicious ?

- * How can we recover Counter secret share if SP goes offline / hacked / becomes malicious?
- * Under certain assumptions this can be done easily.
 - Escrow service that is triggered to release SP secret share once SP is not sending a life signal for a certain period of time

- * general idea:
 - ▶ If enough Owners collaborate, they each get to recover their Counter party secret share at the same time

- * general idea:
 - ▶ If enough Owners collaborate, they each get to recover their Counter party secret share at the same time

- * general idea:
 - ▶ If enough Owners collaborate, they each get to recover their Counter party secret share at the same time

Background: PVSS [S99]

Publicly Verifiable Secret Sharing

Publicly Verifiable Secret Sharing

Publicly Verifiable Secret Sharing

Dealer public proofs : A dealer cannot send incorrect shares

Publicly Verifiable Secret Sharing

Reconstruction: t out of n

Publicly Verifiable Secret Sharing

Background: DLog VE [CS03]

Verifiable Encryption of Discrete Log

Background: DLog VE [CS03]

Verifiable Encryption of Discrete Log

{*Gen*, *Enc*, *Dec*}

$$\{x,\omega\} \in R_{dlog}$$

Background: DLog VE [CS03]

Verifiable Encryption of Discrete Log

 $\{Gen, Enc, Dec\}$

 $\{x,\omega\} \in R_{dlog}$

Background: DLog VE [CS03]

Verifiable Encryption of Discrete Log

 $\{Gen, Enc, Dec\}$

$$\{x,\omega\}\in R_{dlog}$$

Background: DLog VE [CS03]

Verifiable Encryption of Discrete Log

 $\{Gen, Enc, Dec\}$

 $\{x,\omega\}\in R_{dlog}$

$$\omega \leftarrow Dec^{\star}(c, sk_m)$$

Threshold Verifiable Encryption

Threshold Verifiable Encryption

{ *Gen*, *Enc*, *Dec* }

 $\{x,\omega\}\in R_{dlog}$

Threshold Verifiable Encryption

 $c, \pi \leftarrow Enc^{\star}(\omega, \{pk_i\}_1^n, pk_m)$

 $\{Gen, Enc, Dec\}$ $\{x, \omega\} \in R_{dlog}$

 $\{sk_m, pk_m\} \leftarrow Gen(1^n)$

Threshold Verifiable Encryption

 $\{Gen, Enc, Dec\}$

 $\{x,\omega\} \in R_{dlog}$

PVSS::distribute

$$1/0 \leftarrow V(c, \pi, x, pk_m) \\ \{\pi_{d_i}\}_{1}^{n}$$

$$\{sk_m, pk_m\} \leftarrow Gen(1^n)$$

Threshold Verifiable Encryption

 $c, \pi \leftarrow Enc^*(\omega, \{pk_i\}_1^n, pk_m)$

 $\{Gen, Enc, Dec\}$

 $\{x,\omega\}\in R_{dlog}$

$$1/0 \leftarrow V(c, \pi, x, pk_m) \\ \{\pi_{d_i}\}_{1}^{n} \{\pi_{r_i}\}_{1}^{t}$$

 pk_2

 $\{sk_m, pk_m\} \leftarrow Gen(1^n)$

Threshold Verifiable Encryption

 $c, \pi \leftarrow Enc^*(\omega, \{pk_i\}_1^n, pk_m)$

 $\{Gen, Enc, Dec\}$

$$\{x,\omega\} \in R_{dlog}$$

$$1/0 \leftarrow V(c, \pi, x, pk_m) \\ \{\pi_{d_i}\}_{1}^{n} \{\pi_{r_i}\}_{1}^{t}$$

$$\omega \leftarrow Dec^{\star}(c, sk_m, \{ss_i\}_1^t, Dec)$$

$$\{sk_m, pk_m\} \leftarrow Gen(1^n)$$

Threshold Multiple Output Verifiable Encryption

Threshold Multiple Output Verifiable Encryption

{*Gen*, *Enc*, *Dec*}

 $\{x,\omega\}\in R_{dlog}$

Threshold Multiple Output Verifiable Encryption

 $\{c_i\}_1^n, \pi \leftarrow Enc^*(\{\omega_i\}_1^n, \{pk_i\}_1^n)$

 $\{Gen, Enc, Dec\}$ $\{x, \omega\} \in R_{dlog}$

Threshold Multiple Output Verifiable Encryption

{*Gen*, *Enc*, *Dec*}

 $\{x,\omega\} \in R_{dlog}$

PVSS::distribute

Threshold Multiple Output Verifiable Encryption

 $\{c_i\}_1^n, \pi \leftarrow Enc^*(\{\omega_i\}_1^n, \{pk_i\}_1^n)$

 $\{Gen, Enc, Dec\}$ $\{x, \omega\} \in R_{dlog}$

$$1/0 \leftarrow V(\{c_i\}_{1}^{n}, \pi, x, \{pk_i\}_{1}^{n})$$

$$\{\{\pi_{d_{ij}}\}_{i=1}^{n}\}_{j=1}^{m}$$

$$\{\{\pi_{r_{ij}}\}_{i=1}^{t_j}\}_{j=1}^{m}$$

PVSS::reconstruct

Threshold Multiple Output Verifiable Encryption

 $\{c_i\}_1^n, \pi \leftarrow Enc^*(\{\omega_i\}_1^n, \{pk_i\}_1^n)$

 $\{Gen, Enc, Dec\}$

$$\{x,\omega\}\in R_{dlog}$$

$$1/0 \leftarrow V(\{c_i\}_{1}^{n}, \pi, x, \{pk_i\}_{1}^{n})$$

$$\{\{\pi_{d_{ij}}\}_{i=1}^{n}\}_{j=1}^{m}$$

$$\{\{\pi_{r_{ij}}\}_{i=1}^{t_j}\}_{j=1}^{m}$$

$$\omega_k \leftarrow Dec^*(c_k, sk_k, \{\{ss_i\}_{i=1}^{t_j}\}_{j=1}^m)$$

- * TVE per party
- * Gradual release (up to one segment)

- * TVE per party
- * Gradual release (up to one segment)

- * TVE per party
- * Gradual release (up to one segment)

- * TVE per party
- * Gradual release (up to one segment)

- * TVE per party
- * Gradual release (up to one segment)

* Additive Homomorphic Encryption scheme: ElGamal "in the exponent" (homomorphic ElGamal):

$$Enc_{Y}(\omega) = \{C_{1}, C_{2}\} = \{\omega G + rY, rG\}$$

Additively-Homomorphism:
$$(B_1,B_2)=\{\omega G+rY,rG\}$$

$$+(C_1,C_2)=\{aG+sY,sG\}$$

$$=(D_1,D_2)=\{(a+\omega)G+(r+s)Y,(r+s)G\}$$

* Additive Homomorphic Encryption scheme: ElGamal "in the exponent" (homomorphic ElGamal):

$$Enc_{Y}(\omega) = \{C_{1}, C_{2}\} = \{\omega G + rY, rG\}$$

* We do the following for party *i* and PVSS secret α_i :

$$C_1[i,j] = [\omega_i]_j G + \alpha_j p k_i$$

* Additive Homomorphic Encryption scheme: ElGamal "in the exponent" (homomorphic ElGamal):

$$Enc_{Y}(\omega) = \{C_{1}, C_{2}\} = \{\omega G + rY, rG\}$$

* We do the following for party *i* and PVSS secret α_i :

$$C_1[i,j] = [\omega_i]_j G + \alpha_j p k_i$$

* Verifiable Encryption: ZK proof that $C_1[i,j]$ is an encryption of a small witness segment under public key of party i with randomness equal to α_j

* Additive Homomorphic Encryption scheme: ElGamal "in the exponent" (homomorphic ElGamal):

$$Enc_{Y}(\omega) = \{C_{1}, C_{2}\} = \{\omega G + rY, rG\}$$

* We do the following for party *i* and PVSS secret α_i :

$$C_1[i,j] = [\omega_i]_j G + \alpha_j p k_i$$

- * Verifiable Encryption: ZK proof that $C_1[i,j]$ is an encryption of a small witness segment under public key of party i with randomness equal to α_j
- * Gradual release: α_j are reconstructed one at a time such that at any given moment the difference between parties is no more than one encrypted segment

Verifiable Social Recovery via TMOVE

Service Provider

Owner i

Verifiable Social Recovery via TMOVE

Owner i

2P keyGen

$$sk = f(s_r, s_m)$$

Verifiable Social Recovery via

Verifiable Social Recovery via TMOVE/ part2

Verifiable Social Recovery via TMOVE/ part2

TMOVE::reconstruct

Verifiable Social Recovery via TMOVE/ part2

TMOVE::decrypt::party(i)

$Mixed Model\{t=n=2\}$

- * Roles
 - Owner x 1
 - Service Providers x 1

- * System Requirements
 - Mo single point of failure
 - Move of assets (signing) cannot happen without Owner approval
 - Recovery is possible at all times

Mixed Model $\{t=n=2\}$

- * Roles
 - Owner x 1

- * System Requirements
 - Mo single point of failure
 - Move of assets (signing) cannot happen without Owner approval
 - Mecovery is possible at all times

The Journey

Practical Considerations

- *One SP can handle millions of Owners
- *Owners can join the service Asynchronously
- *Owners of the same SP must have similar stake in the system
- *PKI: Owners of the same SP must know each other public key (blockchain pk's are good)

