
Web3 Transaction Simulation
White Paper

Version 1.0
February 2025

2Web3 Transaction Simulation White Paper

The introduction of Web3’s smart contracts to the blockchain environment has
opened virtually unlimited opportunities for Dapps and users. Prior to smart
contracts, cryptocurrency blockchain functionality was limited to transfer of
funds. With smart contracts, anything that can be coded can be done on the
blockchain, enabling innovative new verticals such as Decentralized Finance
(DeFi) protocols and new asset types (e.g. NFTs).

The flip side of this expressiveness is that while a traditional financial transaction
is very simple to comprehend, in a Web3 environment, the users’ blockchain
transactions are actually remote procedure calls (RPCs) for Smart Contracts, and
it is almost impossible to analytically know what would be the result of a general
function. This observability gap can, and in fact is, abused by attackers to trick
users into signing transactions that are actually harmful for them.

A common and the current de-facto standard solution for this transaction
intelligibility gap is Transaction Simulation, commonly abbreviated as Simulation.
With Simulation the candidate transaction is evaluated by a node, as if it was sent
to the blockchain, but without actually sending the transaction it. As a result,
users can now see the expected results of their transaction and decide whether
or not they want to actually approve it.

However, Simulation solutions have their own limitations, whether theoretical
or practical and just like any other solution may suffer from implementation
bugs and attackers exploitation of them. In this paper we explore Simulation
limitations and suggest solutions.

Web3 Transaction Simulation Paper

Intro

3Web3 Transaction Simulation White Paper

This paper is organized as follows:

Section 1: ..4

Provides an intro on how Ethereum Smart Contracts enable Web3

Section 2: .. 6

Describes the resulting Web3 security challenges

Section 3: ... 7

Details how Transaction Simulation technology is solving these securiy

challenges

Section 4: ... 8

Highlights some of the theoretical and practical limitations of Simulation

technology

Section 5: ... 10

Details a specific form of attacks against Transaction Simulation as discovered

by the Zengo research term

Section 6: ... 13

Provides some practical recommendations for both users and wallets builders

on the proper implementation and usage of Transaction Simulation to avoid

such attacks

4Web3 Transaction Simulation White Paper

Bitcoin, the first blockchain launched in 2009, was primarily designed as a decentralized digital
currency and store of value, aiming to serve as an alternative to traditional fiat currencies. Its main
purpose is to facilitate peer-to-peer electronic transactions without the need for intermediaries.

Conversely, Ethereum, launched in 2016, was developed as a versatile platform that supports
not only digital currency (Ether) transfers, but also code execution with Smart Contracts. Smart
Contracts can serve as the backend computing layer for Web3, the infrastructure being built to
decentralize the internet.

Smart Contract developers implement their ideas in Solidity code and deploy it to the Ethereum
blockchain. Ethereum users interact with Smart Contract functions via blockchain transactions.
In such transactions, the transaction recipient address is the executed Smart Contract and the
transaction data includes encoded function name and parameters.

The verbosity of such transactions created a user experience challenge: How can a common user
know which functions to call and what are the right parameter values to encode in the transaction?

For some limited yet highly important use cases, such as the ERC-20 tokens, the solution was to
create standards and have wallets implement the relevant user experience for them. As a result,
when users send a token, the wallet displays a human-readable user interface and encodes the
relevant Smart Contract transaction with the relevant function and parameters encoded within it
for the user to sign.

However, when developers want to innovate and create new types of apps, standards do not
scale. Developers need to create dynamic user frontend interfaces that can serve as intermediaries
between the user and backend code deployed as a smart contract. These frontend intermediaries
are called Decentralized Applications, and commonly abbreviated as Dapps.

Section 1:
Ethereum Smart Contracts Enabling Web3

5Web3 Transaction Simulation White Paper

When users want to interact with a Web3 Dapp:

1. User interacts with dapp (e.g. UniSwap)
 a. The user browses to the dapp’s Web2 interface hosted on Web2
 b. The Dapp presents the users with a user interface
 c. The user interacts with the Dapp’s interface
 d. Finally, the Dapp creates a transaction according to the users’ choices

2. The transaction is transferred to the user’s wallet to sign

3. The user interacts with the wallet to sign the Dapp’s suggested transaction

4. The wallet transmits the transaction to the blockchain.

5. The blockchain executes the transaction according to the Smart Contract code

6. The Wallet and the Dapp polls on the blockchain to fetch the transaction results and present
them to the user. The user can continue to interact with the Dapp (back to step 1)

The Web3 Triangle: Wallet, Blockchain, Dapp

6Web3 Transaction Simulation White Paper

Prior to Web3, in the Bitcoin model, users needed to trust two elements for transaction execution,
namely their wallet and blockchain:

• The wallet needed to present the transaction details appropriately
• The blockchain needed to execute the transaction according to its content

Although there could be problems within both of these elements (rogue, buggy and hacked wallets
and blockchains) users have found ways to identify the trustworthy blockchains and wallets.

However, Web3 introduced additional elements within the blockchain ecosphere: the Dapp and
the Smart Contract. Unlike wallets and blockchains, in which users typically have a long-lasting
relationship, Dapps and Smart Contracts can represent a very short-term relationship, so trust is
hard to establish.

How can users protect themselves from Dapps that present attractive promises on their human-
readable Web2 interface, but actually encode a transaction that would send all their money away?

There could be many reasons for discrepancies between the expected result as shown on the
Web2 interface and the actual result as recorded on the blockchain. The Dapp interface can be
hacked by attackers, spoofed by attackers, rogue by design, or just buggy and (almost) same goes
for Smart contracts that can be buggy, or rogue by design.

A Prominent example of such issues is the BadgerDAO hack, in which hackers changed the Dapp’s
Web2 interface to target high–worth individuals and steal $120M of cryptocurrency.1

1 See: https://zengo.com/the-badgerdao-hack-what-really-happened-and-why-it-matters/

Section 2:
Web3 Security Challenges

https://zengo.com/the-badgerdao-hack-what-really-happened-and-why-it-matters/

7Web3 Transaction Simulation White Paper

To promote a trustworthy Web3 ecosystem, Web3 users must know that the result of the
transaction they are about to sign, created by Dapp and evaluated by a Smart Contract, will yield
the expected result as advertised by the Dapp.

To do so, they need to rely on their wallet (which they already trust and have a long-lasting
relationship with) to help them, and present the expected results of the transaction, suggested by
the Dapp.

While it is very hard to analyze the results of a piece of code for a given input, it is relatively
straightforward to execute it in a contained environment and observe the results. This is what
Transaction Simulation does: It executes the Transaction locally on the Ethereum Virtual Machine
(EVM) and presents its results to the user.

Specifically, the transaction function and parameters are decoded from the transaction and
executed by the Smart Contract code as deployed on the blockchain against the state of the
blockchain (e.g. the user balance is taken from the blockchain’s state) at the time of simulation.
The results of the transaction is determined by standard events emitted by the Smart Contract,
mostly the tokens’ Transfer and Approval event.

However, there are limitations to this practice, as we will demonstrate in Section 4 (below).

Section 3:
Solving Web3 Security Challenges with
Transaction Simulation

8Web3 Transaction Simulation White Paper

The design of current mainstream Transaction Simulation solutions may be exposed to the
following issues:

• Event dependency issues:
◦ Mainstream Simulation solutions cannot detect operations that are not transfers or

approvals: e.g. the simulation will not detect some proprietary function in a Dapp
although it may have important consequences

◦ Simulation will not detect non-standard events or when events are not emitted: for
example, some early implementations of ERC-20 tokens (e.g. CryptoKitties) and NFTs
were created before the standard was finalized and require a specific tailoring for
their events to be interpreted

◦ Rogue contracts may emit false events to deceive the Simulation

• Time-of-Check, Time of Use (TOCTOU) issues: Simulation is run against a given state of
the blockchain, the results may vary when the actual transaction is executed. E.g. the
simulation of a uniswap transaction with a changing rate might be different from the
actual result when the transaction actually gets executed.

• Evaluation of non-transactions (“offline signatures”): Dapps may suggest users to sign
buffers that are not immediately executed on the blockchain. These signed buffers are
used later on as parameters for such Dapps. Examples for such offline signatures are the
Permit offline signature and OpenSea List offline signature2. Since Simulation is based on
execution of the buffer on the EVM, it cannot evaluate in the same manner.

• Red pill attacks: If the Simulation environment parameters are different than the actual
blockchain environment, then a rogue contract can abuse that to detect it is running a

2 https://zengo.com/offline-signatures-can-drain-your-wallet-this-is-how-part-1-2/ 

Section 4:
Limitations of Simulation

9Web3 Transaction Simulation White Paper

Simulation and present benign results - delaying its actual malicious functionality until
realtime execution on the real blockchain. We’ll expand on this attack vector in Section 5
(below).

While these issues may appear to be very problematic, it is not to say that Transaction Simulations
are irrelevant. On the contrary, Transaction Simulation can be a highly relevant solution to protect
users against rogue Dapps suggesting bad function calls to good contracts controlling Tokens and
NFTs.

The rogue Dapps abusing good contracts scenario constitutes a large portion of the issues that
users are faced with. It is important to note that Transaction Simulation is not a panacea and must
be augmented with additional solutions to provide a more extensive user attack surface coverage.

10Web3 Transaction Simulation White Paper

If the Simulation environment parameters are different than the actual blockchain environment,
then a rogue contract can abuse that to detect it is running under simulation and present benign
results. Later, it will run its malicious functionality only when executed on the real blockchain.

Sieving through all of Solidity’s (Ethereum smart contract programming language) instructions, we
set our sights on “Special-Variables.” These variables carry some general information on blockchain
functionality (e.g. the timestamp of the current block, the address of current block miner) or some
information on the user controlled parameters of the transaction (e.g. paid fees).
These instructions looked like potential candidates to be “red pills.” Since these variables may
take a range of values, there is no “correct” value for them. Therefore, it’s tempting for simulation
implementers to “take a shortcut” and set them to some constant value. While these constant
values are technically valid, they can serve as a “red pill” by savvy attackers.

Section 5:
Red Pill Attacks

https://docs.soliditylang.org/en/v0.8.19/units-and-global-variables.html#special-variables-and-functions

11Web3 Transaction Simulation White Paper

For example, the “COINBASE” instruction contains the address of the current block miner. Since
in simulation there is no real block and hence no miner, some simulation implementations just
set it to the null address (all zeros address).

Therefore, a malicious smart contract may weaponize this “COINBASE” red pill as follows:
Ask users to send some native coin to the contract, if COINBASE is zero (which means simulation
in Polygon) the contract will send back some coins in return, thus making the transaction
potentially profitable to the user when its wallet simulates it. However, when the user sends the
transaction on-chain, COINBASE is actually filled with the non-zero address of the current miner,
and the malicious contract just takes the sent coins.

This is exactly what is shown in the screenshot3, in which we show how the “COINBASE” exploit
can be used against Coinbase wallet users.

The victim users are shown by simulation that the transaction is highly profitable: If they send
0.1 MATIC (~$0.1), they will get 0.016 WETH (~$30) in return. However, when they actually send
their MATIC they actually get nothing in return!

3 Full video https://www.youtube.com/watch?v=Krp8qtVpGpQ

Coinbase Simulation exploited
with COINBASE Red Pill

https://www.youtube.com/watch?v=Krp8qtVpGpQ

12Web3 Transaction Simulation White Paper

As a result, this vulnerable simulation implementation actually helps the malicious smart
contract persuade its victims into sending their funds to it.

Testing for Red Pill attacks:

We tested a few simulation implementations and found out they were vulnerable to one or more
variants of the red pill attack.

The above table shows vulnerable extensions, wallets and simulation vendors. All vendors were
very receptive to our reports, and most of them were quick to fix their faulty implementations.
To help Simulation providers, wallet developers and users to test against such attacks, we
are sharing our code and deployed Smart Contract as open source (See Appendix below for
details).

13Web3 Transaction Simulation White Paper

For users:

1. Make sure the wallet you are using for Web3 transactions includes a Transaction Simulation
capability as part of a holistic security solution that consists of multiple additional elements.

2. Security mechanisms are not a replacement for common-sense. If something is too good to be
true, it probably is, even if your advanced security mechanisms do not alert.

For Wallets and Simulation Implementors:

1. Transaction Simulation capabilities are an important and even mandatory security tool for
modern wallets and should be part of any modern Web3 wallet.

2. Transaction Simulation is not easy to get right, so it is probably better to use a battle tested
implementation or service and not “roll your own”.

3. Test your Transaction Simulation implementation against our red pill attack reference
implementation to make sure your solution is not vulnerable to such attacks.

4. Create a comprehensive Web3 security solution which includes Transaction Simulation along
with additional elements (e.g. security reputation).

5. It is very important to put Transaction Simulation results in the necessary context to enable
users to make informed decisions. E.g. the user experience for “Approval” transaction
simulation should include explanation on the implications of approval and the reputation of the
Approval spender’s address. E.g. approval for an EOA address should be a red flag.

Section 6:
Recommendations

14Web3 Transaction Simulation White Paper

Conclusions

Transaction Simulation is a highly relevant solution to protect users against rogue Dapps
suggesting bad function calls to good contracts controlling Tokens and NFTs. The rogue Dapps
abusing good contracts scenario, constitutes a very large portion of the issues that users are faced
with.

However, it is important to note that Transaction Simulation is not a panacea and must be
augmented with additional solutions to provide a more extensive user attack surface coverage.
Additionally, Simulation and similar security solutions should be thoroughly tested, because of the
negative impact of the false sense of security that may facilitate further abuse.

15Web3 Transaction Simulation White Paper

Ethereum assembly opcodes analysis

The analysis showed the following potentially interesting opcodes

Appendix

16Web3 Transaction Simulation White Paper

Onchain infrastructure

A contract to test these behaviors was deployed to Ethereum Mainnet
0x53eeac329df155f07f327d13867fc93b0c7ebbf3#writeContract

The code is shared on https://github.com/ZenGo-X/simulation-checker

Supporting the following functionalities, that corresponds to tested opcodes above

https://etherscan.io/address/0x53eeac329df155f07f327d13867fc93b0c7ebbf3#writeContract
https://github.com/ZenGo-X/simulation-checker

17Web3 Transaction Simulation White Paper

Authors and Acknowledgements
This report was assembled by the Zengo Research Team led by Zengo Co-founder and Chief
Technical Officer Tal Be’ery, and contains contributions from many members across the company.

A special thank you to @0xVazi for his deep research contribution and to the Ethereum
Foundation's Ecosystem Support Program (ESP) for their grant to pursue this critical research and
share it with the wider community.

Questions or comments? Email us at security@zengo.com

© 2025 Zengo Ltd. All rights reserved.

https://x.com/0xVazi
https://x.com/EF_ESP
https://x.com/EF_ESP
mailto:security%40zengo.com?subject=Web3%20Transaction%20Simulation

