
Multi-party ECDSA Security Audit
Final Report, 2019-10-22
FOR PUBLIC RELEASE

Contents
1 Summary 3

2 Methodology 4

2.1 Protocol Security . 4
2.2 Code Safety . 4
2.3 Cryptography . 5
2.4 Protocol Specification Matching . 5

3 Findings 6

KZM-F-01 Safe primes are not used . 6
KZM-F-02 Missing check in KeygenSecondMsg 7
KZM-F-03 Message hashing left to the signer in both scheme 8
KZM-F-04 Error in computing shared secret key from ECDH 9
KZM-F-05 Signing phase 4 is not explicitly doing ZKP verification 10
KZM-F-06 Secret temporary value not zeroized 11
KZM-F-07 Deviation: range proofs are not performed in MtA 12
KZM-F-08 Deviation: extra values are included in the commitment in

multi-party ECDSA . 12
KZM-F-09 Deviation: elements hashed in reverse order 13
KZM-F-10 Deviation: MtAwc is missing a ZK proof 13
KZM-F-11 Deviation: missing proof in the two-party-rotation protocol . . . 14

1

Multi-party ECDSA Security Audit KZen

4 Observations 15

KZM-O-01 Implicit secret inputs zeroized during two-party KeyGen 15
KZM-O-02 Hard-coded delays . 15
KZM-O-03 Party labeling reversed in the two-party ECDSA 16
KZM-O-04 The range proofs are using a static salt 16
KZM-O-05 Clippy warnings . 17

5 About 19

FOR PUBLIC RELEASE Page 2 of 19

1 Summary
KZen hired Kudelski Security to perform a security assessment of their multi-party
ECDSA library written in Rust, and provided us access to their source code and
documentation.
The repository concerned is:
https://github.com/KZen-networks/multi-party-ecdsa

we specifically audited commit c2964f9 in the branch “audit1”.
This document reports the security issues identified and our mitigation
recommendations, as well as some observations regarding the code base and
general code safety. A “Status” section reports the feedback from KZen’s developers,
and includes a reference to the patches related to the reported issues. All changes
have been reviewed by our team according to our usual audit methodology.
We report:

• 4 security issues of medium severity
• 2 security issues of low severity
• 10 observations related to general code safety

The audit was performed jointly by Dr. Tommaso Gagliardoni, Cryptography Expert,
and Yolan Romailler, Senior Cryptography Engineer.

3

https://github.com/KZen-networks/multi-party-ecdsa

2 Methodology
In this code audit, we performed three main tasks:

1. informal security analysis of the original protocol;
2. actual code review with code safety issues in mind;
3. compliance of the code with the papers.

This was done in a static way and no dynamic analysis has been performed on the
codebase. We discuss more in detail our methodology in the following sections.
2.1 Protocol Security

We analyzed the protocol in view of the claimed goals and use cases, and we inspected
the original protocol description, looking for possible attack scenarios. We focused on
the following aspects:

• possible threat scenarios;
• necessary trust assumptions between involved parties;
• edge cases and resistance to protocol misuse.

2.2 Code Safety

We analyzed the provided code, looking for issues related to safety, including:
• general code safety and susceptibility to known vulnerabilities;
• bad coding practices or unsafe behavior;
• leakage of secrets or other sensitive data through memory mismanagement;

4

Multi-party ECDSA Security Audit KZen

• susceptibility to misuse and system errors;
• error management and logging;
• safety against malformed or malicious input from other participants.

2.3 Cryptography

We analyzed the cryptographic primitives and subprotocols used, with particular
emphasis on randomness and hash generation, signatures, key management, and
encryption. We checked in particular:

• matching of the proper cryptographic primitives to the desired cryptographic
functionality needed;

• security level of cryptographic primitives and of their respective parameters (key
lengths, etc.);

• safety of the randomness generation in the general case and in case of failure;
• assessment of proper security definitions and compliance to the use cases;
• known vulnerabilities in the primitives used.

2.4 Protocol Speci�cation Matching

We analyzed the original papers, and checked that the code matches the specification.
We checked for things such as:

• proper implementation of the different protocol phases;
• proper error handling;
• adherence to the protocol logical description.

FOR PUBLIC RELEASE Page 5 of 19

3 Findings
This section reports security issues found during the audit.
The “Status” section includes feedback from the developers received after delivering
our draft report.
KZM-F-01: Safe primes are not used

Severity: Medium
Description

It appears that in the multi-party ECDSA paper [GG18], safe primes are required
because the ZK proofs used are holding under the Strong RSA assumption.
The current codebase is not generating safe primes, however it should be noted that
the ZK proofs used are not necessarily the same as the ones used in the paper. As such
it is not clear whether other components of the papers are also requiring the Strong
RSA assumption, in which case safe primes should still be used, or not.
Recommendation

Using safe primes comes at a slight performance cost during key generation, but can
only increase the security of the protocol, as such we recommend implementing a safe
prime key generation algorithm instead of the current key generation.
Status

According to KZen’s feedback and research on the issue, it turns out that finding safe
primes takes a considerable amount of time more than finding regular primes (see
e.g. https://crypto.stackexchange.com/questions/66076/how-to-efficiently-g

enerate-a-random-safe-prime-of-given-length). This is because of the low density
of safe primes (see e.g. https://www.researchgate.net/publication/3822432_Safe

6

https://crypto.stackexchange.com/questions/66076/how-to-efficiently-generate-a-random-safe-prime-of-given-length
https://crypto.stackexchange.com/questions/66076/how-to-efficiently-generate-a-random-safe-prime-of-given-length
https://www.researchgate.net/publication/3822432_Safe_primes_density_and_cryptographic_applications
https://www.researchgate.net/publication/3822432_Safe_primes_density_and_cryptographic_applications
https://www.researchgate.net/publication/3822432_Safe_primes_density_and_cryptographic_applications

Multi-party ECDSA Security Audit KZen

_primes_density_and_cryptographic_applications). This is so slow that it makes
GG18 key generation take minutes to generate two 1024-bit safe primes per party.
Because the effect of using safe vs. normal primes is unclear in this case, KZen opted
to allow regular primes as default, and added a comment that switching to safe
primes in production is recommended. To this scope, in the new version the
rust-pailler master branch was changed to support finding safe primes, and an
option was added in multi-party-ecdsa to create a key with safe primes.
KZM-F-02: Missing check in KeygenSecondMsg

Severity: Medium
Description

In two_party_ecdsa/party_two.rs the function verify_commitments_and_dlog_proof()

implements step 5. of [Lin17], Protocol 3.1, and correctly performs checks (a)
(commitment of public key and range proof) and (b) (encryption of correct discrete
log from language LPDL), but does not verify check (c) (length of Paillier key):

193 let mut flag = true;

194 if party_one_pk_commitment

195 == &HashCommitment::create_commitment_with_user_defined_randomness(

196 &party_one_public_share.bytes_compressed_to_big_int(),

197 &party_one_pk_commitment_blind_factor,

198) {

199 flag = flag

200 } else {

201 flag = false

202 }

203 if party_one_zk_pok_commitment

204 == &HashCommitment::create_commitment_with_user_defined_randomness(

205 &party_one_d_log_proof

206 .pk_t_rand_commitment

207 .bytes_compressed_to_big_int(),

208 &party_one_zk_pok_blind_factor,

209) {

210 flag = flag

211 } else {

212 flag = false

213 };

214 assert!(flag);

215 DLogProof::verify(&party_one_d_log_proof)?;

216 Ok(KeyGenSecondMsg {})

217 }

FOR PUBLIC RELEASE Page 7 of 19

https://www.researchgate.net/publication/3822432_Safe_primes_density_and_cryptographic_applications
https://www.researchgate.net/publication/3822432_Safe_primes_density_and_cryptographic_applications
https://www.researchgate.net/publication/3822432_Safe_primes_density_and_cryptographic_applications

Multi-party ECDSA Security Audit KZen

Notice the following:
1. we have found a typo in [Lin17] Protocol 3.1, looking at the explanation in the

introduction of that paper it seems that it should bemax(3 log |q|+ 1, n) notmin.
We have reported this to the author of the paper, who acknowledged the typo
and corrected it on ePrint.

2. the reason for this check is that P2 wants non-repudiation from P1: imagine P1 and
P2 generate a signature, e.g. a Bitcoin transaction; after that P1 might say “hey, I
never authorized that signature! I think P2 bruteforced my ckey and recovered my
secret share x1 so he could output a signature without my approval!”

Recommendation

It should be checked that the modulus N of the Paillier key generated by the server is
of length 2048 bits.
Status

This has been corrected in the new release. However, the check was added in
verify_ni_proof_correct_key, which is a more natural place for this scope.
KZM-F-03: Message hashing left to the signer in both scheme

Severity: Medium
Description

Wewant to stress that the library is assuming it receives amessage digest as input, not
a message, and as such is not performing the hashing, nor the mapping onto Zq.
In two_party_ecdsa/party_two.rs, it appears that PartialSig() takes as input a
message which should be a BigInt (line 424) without hashing it beforehand as per
[Lin17], Protocol 3.2.
The same is done also for [GG18], where the message is said in comment to be
assumed signed by the signer. However, notice that it is then reduced modulo 2256,
before being processed by the ECScalar::from() function, which reduces it modulo the
curve_order q in the secp256k case (notice that for other curves in the library, the
ECScalar::from() function is not necessarily behaving in the same way.)

FOR PUBLIC RELEASE Page 8 of 19

Multi-party ECDSA Security Audit KZen

Recommendation

Since this is an explicit choice, we recommend delegating entirely the task of hashing
and mapping onto Zq to the signer, and to reject message digestsZq by erroring out.
As such, there should be no need to reduce themessage digestmodulo 2256. (Especially
so, since this is done again in the ECScalar::from() function.)
Status

KZen acknowledges this observation and removed the unnecessary modulo 2256

reduction. However, it was decided to apply the full change in hashing of the input in
a future release.
The reason is that all KZen libraries are working under the design principle of letting
the user do the hashing, the rational being that if a user would want to sign a message
which is not a digest, that would be fine as long as the message can be mapped to an
element in the field (which is the job of the library to do). KZen accepts the suggestion
in the report, but since in this case they not see an immediate security risk and all KZen
libraries would be affected, they decided to push the change in a coordinated way in
the future, as otherwise it would be prone to errors and issues of interoperability.
KZM-F-04: Error in computing shared secret key from ECDH

Severity: Medium
Description

Currently the AES encryption keys used to establish a secure channel between all pairs
of peers in the multi-party key generation client are setup using a wrong shared key
algorithm. In gg18_keygen_client.rs, we can see that the shared key is created by
adding the public points together:

168 enc_keys.push(

169 (party_keys.y_i + decom_j.y_i)

170 .x_coor()

171 .unwrap(),

172);

But this is not the standard elliptic curve Diffie-Hellman key agreement, since it means
that the shared keys are generated by adding the public keys of both parties, which
can be recomputed by anyone, as it only involves public information.

FOR PUBLIC RELEASE Page 9 of 19

Multi-party ECDSA Security Audit KZen

Recommendation

Establish a secure channel, typically by using the regular Diffie-Hellman key agreement,
in which the shared key is establish by scalar multiplication of the other party’s public
point with the local party’s secret scalar:

168 enc_keys.push(

169 (party_keys.u_i * decom_j.y_i)

170 .x_coor()

171 .unwrap(),

172);

Status

Corrected as per recommendation in the new release.
KZM-F-05: Signing phase 4 is not explicitly doing ZKP verification

Severity: Low
Description

In the multi-party ECDSA code, the function verify_dlog_proofs() is used to verify the
proofs of knowledge of xi in the key generation, but in the signing phase 4, it should
also be verified that the decommitted values proves the knowledge of γi.
The proofs in b_proof_vec are currently not directly verified, neither in fn phase4() in
party_i.rs, neither in the gg18_sign_client.rs code.

435 let test_b_vec_and_com = (0..b_proof_vec.len())

436 .map(|i| {

437 b_proof_vec[i].pk.get_element() ==

phase1_decommit_vec[i].g_gamma_i.get_element()↪→

438 && HashCommitment::create_commitment_with_user_defined_randomness(

439 &phase1_decommit_vec[i]

440 .g_gamma_i

441 .bytes_compressed_to_big_int(),

442 &phase1_decommit_vec[i].blind_factor,

443) == bc1_vec[i].com

444 })

445 .all(|x| x == true);

Recommendation

Implement the additional verification step.
FOR PUBLIC RELEASE Page 10 of 19

Multi-party ECDSA Security Audit KZen

Status

This is actually mitigated by the fact that the b_proof_vec is populated using the results
from the MtAwc, which is handling the proof verification in the
verify_proofs_get_alpha() function. However, it should be documented, as this check
is important and shall the MtAwc be replaced by the simpler MtA version, that check
would not be performed anymore. Therefore, a comment has been added in the new
release.
KZM-F-06: Secret temporary value not zeroized

Severity: Low
Description

In two_party_ecdsa/party_one.rs one can find the following code:
430 let mut secret_share: FE = ECScalar::new_random();

431 let public_share = base * secret_share;

432 let h: GE = GE::base_point2();

433 let c = h * secret_share;

434 let mut x = secret_share;

435 let w = ECDDHWitness { x };

436 let delta = ECDDHStatement {

437 g1: base,

438 h1: public_share,

439 g2: h,

440 h2: c,

441 };

442 let d_log_proof = ECDDHProof::prove(&w, &delta);

443 let ec_key_pair = EphEcKeyPair {

444 public_share,

445 secret_share,

446 };

447 secret_share.zeroize();

448 x.zeroize();

However here, the value w should also be zeroized, as it contains the same sensitive
data as the value x. The same happens in party_two.rs, line 383.
Recommendation

Zeroize these values as well.
Status

Corrected as per recommendation in the new release.
FOR PUBLIC RELEASE Page 11 of 19

Multi-party ECDSA Security Audit KZen

KZM-F-07: Deviation: range proofs are not performed in MtA

Severity: Informational
Description

In the multi-party ECDSA case, in mta.rs, in impl MessageA the range proofs are not
included for Alice, and in impl MessageB, instead it is only computing a proof of
knowledge of the discrete logarithm of gb, instead of proving that b is in the
appropriate range as per page 8 of [GG18], where it says Bob should be proving in ZK
that b < K (for K q3).
The rational why we might want to have the range proof are in [GG18] on page 9,
basically it would allow a malicious party to make the threshold signature fail
verification and let them go unblamed.
Status

KZen has been informed that this is an explicit deviation from the paper [GG18] that
is notably motivated by the arguments discussed in Section 5 (page 19) of the same
paper. The lack of “blame phase” is a fundamental problem with these protocols that
KZen believes to be solvable. For now, an issue was opened specifically on this topic:
https://github.com/KZen-networks/multi-party-ecdsa/issues/80.
KZen will allow for optional range proofs in future releases. An issue was opened on
this topic: https://github.com/KZen-networks/multi-party-ecdsa/issues/79.
KZM-F-08: Deviation: extra values are included in the commitment

in multi-party ECDSA

Severity: Informational
Description

In phase5a_broadcast_5b_zkproof, the value let B_i = g * l_i_rho_i; is computed and
committed, which is not included in the original paper [GG18].Notice this value is
then part of the proof, and is correctly checked. This is an undocumented deviation
from the paper and is not a security issue.
Status

KZen does not consider harmful to include this extra information.
FOR PUBLIC RELEASE Page 12 of 19

https://github.com/KZen-networks/multi-party-ecdsa/issues/80
https://github.com/KZen-networks/multi-party-ecdsa/issues/79

Multi-party ECDSA Security Audit KZen

KZM-F-09: Deviation: elements hashed in reverse order

Severity: Informational
Description

We noticed a very slight, undocumented deviation from the original Lindell
paper [Lin17]: in the two party ECDSA, during the PDL routine for the key generation
(see protocol 6.1 in [Lin17]) at one intermediate step, it is required to compute the
commitment of secret values a and b.
For example, in party_one.rs, this is done as:

412 let ab_concat = a.clone() + b.clone().shl(a.bit_length());

413 let c_tag_tag_test =

414 HashCommitment::create_commitment_with_user_defined_randomness(&ab_concat, &blindness);

This is equivalent to computing the commitment of b||a. However, in [Lin17] it is the
value a||b that gets committed instead.
This difference is arguably irrelevant for the security of the protocol, however might
cause interoperability issues if not documented.
Status

A comment was added in the new release.
KZM-F-10: Deviation: MtAwc is missing a ZK proof

Severity: Informational
Description

In the multi-party ECDSA case, in mta.rs, it appears the ZK proof that
cB = b×E EA(β′) is replaced by a different proof that recomputes the ciphertext on
Alice’s side and compare it with the actual one.

80 let ba_btag = &self.b_proof.pk * a + &self.beta_tag_proof.pk;

81 match DLogProof::verify(&self.b_proof).is_ok()

82 && DLogProof::verify(&self.beta_tag_proof).is_ok()

83 && ba_btag.get_element() == g_alpha.get_element()

84 {

85 true => Ok(alpha),

86 false => Err(InvalidKey),

87 }

FOR PUBLIC RELEASE Page 13 of 19

Multi-party ECDSA Security Audit KZen

It appears the outcome is the same as performing the ZK proof done in [GG18].
Status

A comment was added in the new release. A more formal specification document will
be provided in the future.
KZM-F-11: Deviation: missing proof in the two-party-rotation

protocol

Severity: Informational
Description

In two_party_ecdsa/party_one.rs, the function refresh_private_key() for the server
side correctly generates a range proof for the new key and a proof of valid Paillier key
formation, but it appears one proof is missing: according to step 4 of the two-party-
rotation protocol in [KZ19], Section 4.4, there should also be a LPDL proof, which is
currently missing in the library.
Recommendation

Add the proof, or document why this is not done in the library.
Status

KZen’s design goal is to not allow clients to have access or to manipulate private data
such as the secret share. This is why if there is a need from outside of the library to do
computations over the secret share it should be implemented in themulti-party ECDSA
library, but only the sensitive parts are currently implemented. While the LPDL proof
is also part of the key rotation, it is something a client could do.
KZen already implemented the rotation scheme in another library: the relevant part of
the test that includes the LPDL proof can be found in the kms-secp256k1 repository in
src/ecdsa/two_party/test.rs.

FOR PUBLIC RELEASE Page 14 of 19

https://github.com/KZen-networks/kms-secp256k1/blob/c76272f911df2c7e2012c174630277637b7ab8de/src/ecdsa/two_party/test.rs#L164

4 Observations
This section reports various observations that are not security issues to be fixed, such
as improvement or defense-in-depth suggestions.
KZM-O-01: Implicit secret inputs zeroized during two-party KeyGen

In two_party_ecdsa/party_one.rs (the same happens in party_two.rs) there are
two different functions which can be called to produce the first message of the key
generation protocol: one is pub fn create_commitments() and the other is pub fn

create_commitments_with_fixed_secret_share().
The former generates a secret share, makes sure that it falls in the correct range, and
then correctly zeroizes the temporary value. The latter takes as input the secret share,
which is assumed to be generated and falling a priori in the right range. Given this, it
could be a good thing to zeroize() its input as done on line 212.
Status

Corrected in the new release.
KZM-O-02: Hard-coded delays

Since the protocols are assuming a reliable broadcast channel, whereas the internet is
not a synchronous network, delays are used in the communication in order to try and
ensure delivery of the messages before proceeding further. However the delay value
is currently hard-coded as a magic number (25ms) in the source.
We recommend having a way to set larger delays to avoid problems in practice, that
could arise depending on the use-cases in which the protocols are used.

15

Multi-party ECDSA Security Audit KZen

Status

KZen argues that this intentional delay is mainly to run the demo. Other users of the
library changed the delay to fit their use case. In practice KZen has another project for
the communication layer: https://github.com/KZen-networks/white-city.
KZM-O-03: Party labeling reversed in the two-party ECDSA

In the signing protocol, during the ephemeral key generation step, the roles of P1 and
P2 as described in [Lin17], Protocol 3.2, are implemented in party_two.rs and party_

one.rs respectively, i.e., in the reverse order, and then the roles reverse again during
the signature process, just after the ephemeral key generation step.
Although this is unlikely to introduce vulnerabilities, we note that this represents a
deviation from the formal protocol, and therefore we cannot guarantee the safety of
this approach. Moreover, it hurts readability and might be documented more
prominently.
Status

KZen noticed that if the ephemeral DH key exchange is done with first message from
party 2 (and not party 1), then instead of 5 messages the signing protocol can be
done in 4 messages: the second message of party 2 is a combination of the second
message of the DH key generation and the first part of the signature computation:
https://github.com/KZen-networks/kms-secp256k1/blob/master/src/ecdsa/two_

party/party2.rs#L245. KZen did not see necessary to document this modification.
KZM-O-04: The range proofs are using a static salt

In range_proof_ni.rs, a static salt is used, but not explicitly documented:
30 const SALT_STRING: &[u8] = &[75, 90, 101, 110];

Notice this is simply the bytes of the string “KZen”. The usage of a static salt is not a
security issue per se in the given setting, but in a library meant to be reused like this we
recommend having (and documenting) a method to set the salt value.
Status

Tracked at: https://github.com/KZen-networks/zk-paillier/issues/12.
FOR PUBLIC RELEASE Page 16 of 19

https://github.com/KZen-networks/white-city
https://github.com/KZen-networks/kms-secp256k1/blob/master/src/ecdsa/two_party/party2.rs#L245
https://github.com/KZen-networks/kms-secp256k1/blob/master/src/ecdsa/two_party/party2.rs#L245
https://github.com/KZen-networks/zk-paillier/issues/12

Multi-party ECDSA Security Audit KZen

KZM-O-05: Clippy warnings

Wenotice someClippywarnings that could slightly impact performance. However all of
them are really low impact such as the ones about values that are passed by reference,
whereas they could be passed by value, which is more efficient.
Status

KZen acknowledges this observation. The issue is tracked at: https://github.com/K
Zen-networks/multi-party-ecdsa/pull/71.

FOR PUBLIC RELEASE Page 17 of 19

https://github.com/KZen-networks/multi-party-ecdsa/pull/71
https://github.com/KZen-networks/multi-party-ecdsa/pull/71

Bibliography
[GG18] Rosario Gennaro and Steven Goldfeder. “Fast Multiparty Threshold ECDSA

with Fast Trustless Setup”. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’18. Toronto, Canada: ACM,
2018, pp. 1179–1194. ISBN: 978-1-4503-5693-0.

[KZ19] Team KZen. Bitcoin Wallet Powered by Two-Party ECDSA – Extended Abstract.
Tech. rep. KZen Research, 2019. URL: https : / / github . com / KZen -

networks/gotham-city/blob/master/white-paper/white-paper.pdf.
[Lin17] Yehuda Lindell. “Fast Secure Two-Party ECDSA Signing”. In: Advances in

Cryptology – CRYPTO 2017. Ed. by Jonathan Katz and Hovav Shacham. Cham:
Springer International Publishing, 2017, pp. 613–644.

18

https://github.com/KZen-networks/gotham-city/blob/master/white-paper/white-paper.pdf
https://github.com/KZen-networks/gotham-city/blob/master/white-paper/white-paper.pdf

5 About
Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs.
Our global reach and cyber solutions focus is reinforced by key international
partnerships.
Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com or https://kudelski-blockchain.com/.

Kudelski Security
Route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

This report and all its content is copyright (c) Nagravision SA 2019, all rights reserved.

19

https://www.kudelskisecurity.com
https://kudelski-blockchain.com/

	Summary
	Methodology
	Protocol Security
	Code Safety
	Cryptography
	Protocol Specification Matching

	Findings
	Safe primes are not used
	Missing check in KeygenSecondMsg
	Message hashing left to the signer in both scheme
	Error in computing shared secret key from ECDH
	Signing phase 4 is not explicitly doing ZKP verification
	Secret temporary value not zeroized
	Deviation: range proofs are not performed in MtA
	Deviation: extra values are included in the commitment in multi-party ECDSA
	Deviation: elements hashed in reverse order
	Deviation: MtAwc is missing a ZK proof
	Deviation: missing proof in the two-party-rotation protocol

	Observations
	Implicit secret inputs zeroized during two-party KeyGen
	Hard-coded delays
	Party labeling reversed in the two-party ECDSA
	The range proofs are using a static salt
	Clippy warnings

	About

