Cryptographic
Vulnerabilities In
Threshold Wallets

Outline

This talk is focused on the pitfalls of using threshold ECDSA in building new
| 7 generation of SW wallets. |

Yay, Threshold Wallet!

What can go wrong?

A | don’t care. | want it!

Z

A Wallet

* Client software used as a gateway and means of interaction with a
blockchain

* Among other responsibilities, the Client software must play a critical
cryptographic role of generating digital signatures

Threshold Signatures

(t,n)-threshold signature scheme distributes signing power to n parties
1 such that any group of at least parties can generate a signature

<Z

Threshold Signatures

(t,n)-threshold signature scheme distributes signing power to n parties
1 such that any group of at least parties can generate a signature

(2,3) - Keygen

Threshold Signatures

(t,n)-threshold signature scheme distributes signing power to n parties
1 such that any group of at least { parties can generate a signature

(2,3) - Signing
B

Threshold ECDSA

https://github.com/KZen-networks/multi-party-ecdsa

Assumptions KeyGen Sign
[L17] EECDSA, Paillier éSeconds émilliseconds
[GG18] ECDSA, Strong RSA émilliseconds milliseconds
DKiS18 EODSA millscconds millscconds

..

[LNR18] ECDSA, DDH ‘Seconds milliseconds

https://github.com/KZen-networks/multi-party-ecdsa

Threshold ECDSA

https://github.com/KZen-networks/multi-party-ecdsa

Assumptions KeyGen Sign
[L17] EECDSA, Paillier éSeconds émilliseconds
[GG18] ECDSA, Strong RSA émilliseconds milliseconds
DKiS18 EODSA millscconds millscconds
[LNR18] ECDSA,DDH Seconds miliseconds

Annoyingly they all came out at the same time so none contains a
comparison to the others

https://github.com/KZen-networks/multi-party-ecdsa

Threshold ECDSA

https://github.com/KZen-networks/multi-party-ecdsa

Assumptions KeyGen Sign
[L17] EECDSA, Paillier éSeconds émilliseconds
[GG18] ECDSA, Strong RSA émilliseconds milliseconds
DKiS18 EODSA millscconds millscconds
[LNR18] ECDSA,DDH Seconds miliseconds

Annoyingly they all came out at the same time so none contains a
comparison to the others |

—

,; >
Does efficient threshold signing &Jd efficient threshold wallet ? < : :

https://github.com/KZen-networks/multi-party-ecdsa

Threshold Wallet

Described by the following tuple of 5 algorithms

» Distributed key generation (DKG)

» Distributed Signing

» Secret Share Recovery

* Deterministic Child Address Derivation

* Rotation

Ref: _https://github.com/KZen-networks/gotham-city

10

https://github.com/KZen-networks/gotham-city

ThresholdSig > MultiSig?

* Access policy privacy

o Secret refreshment
* Low cost

* Max number of parties

o QOther differences:
* Number of rounds

e Chain support

Q 11

Threshold Wallet -
System

* Distributed network layer

* Who are the n parties?

* Do all parties have to run a full node?

« Can we obtain privacy between signing parties?
* Can we translate BIP32 to multi-party ?

* Single key system and multi-party KMS cannot co-exist

12

| Threshold Wallet System

= —

<Z

<Z

L Threshold Wallet System

 We take [L17] as a study case:
* easier to explain
e old enough to be implemented by several projects

14

ECDSA

« EC public parameters : q,G
» Choose Random k
- Compute R=k-* G

» Compute r = nmod g where R = (1)

» Compute s = k7« (H(m)+r * x) mod g
where x is the private key

» Qutput (r,s)

15

Lindell 2P-KeyGen

PROTOCOL 3.1 (Key Generation Subprotocol KeyGen(G, g, q))

Given joint input (G, G, q) and security parameter 1™, work as follows:
1. Pi’s first message:
(a) P1 chooses a random z1 < Z,/3, and computes Q1 = z1 - G.

(b) P sends (com-prove,1,Q1,z1) to fgﬁ_ﬁk (i.e., Pi sends a commitment
to @1 and a proof of knowledge of its discrete log).
2. Py’s first message:
(a) Px receives (proof-receipt, 1) from F.PL .
(b) P> chooses a random z2 < Z4, and computes Q2 = x2 - G.
(c) P» sends (prove,2,Q2,x2) to .F;,EDL.
3. P;’s second message:
(a) Pp receives (proof,2,Q2) from F.PL. If not, it aborts.

(b) Py sends (decom-proof, 1) to F2DL .
(c) P generates a Paillier key-pair (pk, sk) of length min(3log|q| 4+ 1,n)
and computes ciey = Encyi(z1).
(d) P sends (prove, 1, N, (p1,p2)) to .F;fp, where pk = N = p1 - p2, and
sends Ciey to Po.
4. ZK proof: P; proves to P, in zero knowledge that (ckey,pk, Q1) € LppL.
5. P»’s verification: P, aborts unless all the following hold: (a) it received
(decom-proof, 1,Q1) from .FZIEDL and (proof,1, N) from }"ZIEP, (b) it ac-
cepted the proof that (ckey,pk, @1) € Lppr, and (c) the key pk = N is of
length at least min(3log|q| + 1,n).
6. Output:
(a) P, computes @ = x; - Q2 and stores (z1,Q).
(b) P> computes Q = z2 - @1 and stores (2, Q, Crey)-

16

PROTOCOL 3.2 (Signing Subprotocol Sign(sid, m))

A graphical representation of the protocol appears in Figure 1.

arty as (x2,), Ckey) as outpu rom A, the messag d

the session id sid.
3. P; and P» both locally compute m’ «<— H,(m) and verify that sid has not
been used before (if it has been, the protocol is not executed).

puts

The Protocol:

1. Py’s first message:
(a) Pp chooses a random k; < Z, and computes R; = k; - G.
(b) P: sends (com-prove, sid||1, Rl,kl) to FEDL |

2. P»’s first message:

(a) P; receives (proof-receipt, sid||1) from .Ffzrf’;k

(b) P> chooses a random k2 < Z, and computes Rz = k2 - G.

(c) P» sends (prove, sid||2, Rz, k2) to .lefDL.

3. Pi’s second message:
(a) Pr receives (proof, sid||2, R2) from }"ZfDL; if not, it aborts.
(b) Py sends (decom-proof, sid||1) to Feom-zk-

4. P>’s second message:

(a) P> receives (decom-proof, sid||1, R1) from F_ PZL : if not, it aborts.

(b) P, computes R = k3 - R1. Denote R = (r,7y). Then, P, computes
r = r, mod q.

(c) P chooses a random p < Z, and computes ci
Encyi (p -q+ [k;l -m’ mod q]) Then, P, computes v
ky'-r-z2modgq, c2=v® Crey and c3 = c1 & c2.

(d) P, sends c3 to P;.

5. P; generates output:

(a) P» computes R = ki - R2. Denote R = (rg,7y). Then, P computes
r = r, mod q.

(b) P computes s’ = Decsk(c3) and s = k;' - s mod q. P, sets s =
min{s”,q — s”} (this ensures that the signature is always the smaller
of the two possible values).

(c) Pi verifies that (r, s) is a valid signature with public key Q. If yes it
outputs the signature (r, s); otherwise, it aborts.

- r N q N . o 4 9 91 o~ 7 e v \ s 1T 1. 4 9

17

2P-Keygen [L17]

Q=Q:+Q Q=Qr+Q-

The protocol promises: (1) Privacy, (2) Correctness

2P-Signing [L17]

Signing message m: m’= Hash(m)

Enc-(m’/ ko) H

Enc:(x1)o Ence(x2°r/ ko)

s = Decq(s’)/k1

Output: o = (s,), s.t. Verify(o, Q, m’) =1

yi The protocol promises: (1) Completeness (2) Consistency (3) Unforgeability .

Paillier CryptoSystem

Paillier is additively homomorphic public key encryption scheme

- Homomorphic addition of plaintexts: Decs(Enc-(a) 8 Enc:(b)) =a + b

* Homomorphic multiplication by scalar: Deci(Enc:(a)ok) = a<k

20

Paillier CryptoSystem

Paillier is additively homomorphic public key encryption scheme

- Homomorphic addition of plaintexts: Decs(Enc-(a) 8 Enc:(b)) =a + b

* Homomorphic multiplication by scalar: Deci(Enc:(a)ok) = a<k

 Zero-knowledge proofs (https:/github.com/KZen-networks/zk-paillier):
* Proof of correct key generation (d,e)
* Range proof (1): ¢ =Encs(a), a<r

* Proof that two ciphertexts encrypts the same message : ¢/ =
Ence.(a), c2 = Ence.(b), b ==a

21

https://github.com/KZen-networks/zk-paillier

Getting Dirty

* All examples were found in the wild

* Most of them in our multi-party-ECDSA code:
e https://github.com/KZen-networks/multi-party-ecdsa

* All other important issues were reported and fixed

<Z

22

https://github.com/KZen-networks/multi-party-ecdsa

Z

DO NOT OPTIMIZE #1

Q1 = decom(Q4)

23

DO NOT OPTIMIZE #1

P, P
Q1 = decom(Q1)

Z

Z

#1 DO NOT OPTIMIZE
.

Q1 = decom(Q) B

25

Z

#1 DO NOT OPTIMIZE

P2y P
Q1 = decom(Q1)

Rogue Key Attack (https:/eprint.iacr.org/2018/068.pdf): Qz=Q - Q1

20

https://eprint.iacr.org/2018/068.pdf

#2 DO NOT OPTIMIZE

PROTOCOL 3.1 (Key Generation Subprotocol KeyGen(G, g, q))

Given joint input (G, G, q) and security parameter 1™, work as follows:
1. Pi’s first message:
(a) P1 chooses a random x1 < Zg/3, and computes Q1= -G.

(b) P: sends (com-prove,1,Q1,z1) to F_ 2L (i.e., P1 sends a commitment
to (1 and a proof of knowledge of its dlscrete log).
2. Py’s first message:
(a) Px receives (proof-receipt, 1) from F.PL .
(b) P> chooses a random z2 < Z4 and computes Q2 = z2 - G.
(c) P» sends (prove, 2, Qs,z2) to FiPL.
3. P;’s second message:
(a) P receives (proof,2,Q2) from F.PL. If not, it aborts.

(b) P sends (decom-proof,1) to FDL .
(c) P: generates a Paillier key-pair (pk, sk) of length min(3log |q| + 1,n)
and computes ciey = Encyr(z1).
(d) P1 sends (prove, 1, N, (p1,p2)) to kP, where pk = N = p;1 - p2, and
sends Ckey to Po.
4. ZK proof: P; proves to P in zero knowledge that (ckey,pk,@1) € LppDL.-
5. P»’s verification: P, aborts unless all the following hold: (a) it received
(decom-proof, 1,Q1) from .leiDL and (proof,1, N) from F, zk , (b) it ac-
cepted the proof that (ckey, Pk, Q1) € LpprL, and (c) the key pk = N is of
length at least min(3log|q| + 1,n).
6. Output:
(a) P; computes @ = 1 - Q2 and stores (z1, Q).
(b) P> computes Q = z2 - Q1 and stores (2, Q, Ckey)-

27

#2 DO NOT OPTIMIZE

PROTOCOL 3.1 (Key Generation Subprotocol KeyGen(G, g, q))

Given joint input (G, G, q) and security parameter 1™, work as follows:
1. Pi’s first message:
(a) P1 chooses a random x1 < Zg/3, 2

(b) P sends (com-prove, 1,Q1,z1) to| F_ DL,
to @1 and a proof of knowledge of 1ts diScrete log).
2. Py’s first message:

(a) P» receives (proof-receipt, 1) from F, Rpr

com-zk*
(b) P> chooses a random 2 + Z..and. comp
(c) P> sends (prove,2,Q2,2) t.

3. P;’s second message:
(a) Pi receives (proof,2,Q2) from }'ZR;DL. If not, it aborts.

(b) Py sends (decom-proof, 1) to F DL .
(c) P generates a Paillier key-pair (pk, sk) of length min(34og[q| + 1,n)

and computes ciey = Encyr(z1).
(d) P1 sends (prove, 1, N, (p1,p2)) to

sends Cre, to Po.

(decom-proof, 1,Q1) from F;PL and (proof,1,N) from F.F, (b) it ac-
cepted the proof that (ckey, Pk, Q1) € LpprL, and (c) the key pk = N is of
length at least min(3log |q| 4+ 1,n).

6. Output:
(a) P; computes @ = 1 - Q2 and stores (z1, Q).
(b) P> computes Q = x2 - Q1 and stores (x2, Q, Ckey)-

Correct Paillier
Key Generation

Paillier-DLog

proof

28

DO NOT OPTIMIZE #2

Hey!
ZK proofs can be removed and
code still works!

PROTOCOL 3.1 (Key Generation Subprotocol KeyGen(G, g,q))

Given joint input (G, G, q) and security parameter 1", work as follows:
1. P:’s first message:

(a) P1 chooses a random 1 < Zg/3, and.ca putes Q1 =1z -G.
(b) P sends (com-prove,1,Q1,z1) to i.e., P; sends a commitment

to Q1 and a proof of knowledge o rete log).

2. P’s first message:

(a) P, receives (proof-receipt, 1) from F2DL

com-zk*

(b) P> chooses a random x2 ¢ Zu2 omputes Q2 = z2 - G.
(c) P- sends (prove,2,Q2,x2) t.

3. P;’s second message:

a) P receives (proof, 2,Q2) from F,, ®DL If not, it aborts.
(a)
(b) P: sends (decom-proof, 1) to F, RD)

com-zk*

(c) Pi generates a Paillier key-pair (pk, sk) of length min(3log |g| + 1,n)
and computes cxey = Encpr(x1).

(d) P sends (prove 1, N, (p1,p2)) to where pk = N = p; - p2, and
keu tO Po.

(decom proof 1 Ql) from FPL and (proof,1, N) from]-'ZIEP, (b) it ac-
cepted the proof that (ckey,pk, Q1) € LpprL, and (c) the key pk = N is of
length at least min(3log|q| + 1,n).

6. Output:
(a) P, computes Q = z1 - Q2 and stores (z1, Q).
(b) P, computes @ = z2 - Q1 and stores (z2, Q, Ckey)-

29

1ZK in MPC]

» Zero knowledge proofs hold 3 properties: Completeness, Soundness
and Zero-Knowledge

* MPC (at least here) uses ZK as part of security proof to protect against
Malicious adversaries

* This mean that removing/changing the ZK proof will break the security
proof

Broken security proof does not always lead to immediate attack I

g 30

#2 DO NOT OPTIMIZE

* In KZen implementation of Lindell 2P-KeyGen we neglected Lpp:. (10
our defence we did integrate the Paillier range proof)

PROTOCOL 6.1 (Zero-Knowledge Proof for the Language Lppy)

Inputs: The joint statement is (c, pk,Q1, G, G, q), and the prover has a wit-
ness (z1, sk) with x1 € Z,/3. (Recall that the proof is that x1 = Decsx(c)
and Q1 =z1 -G and z1 € Zg.)

.V chooses a random a < Zg4 and b < Z_2 and computes ¢’ = (a®c)®b
and ¢’ = commit(a,b). V sends (c¢’,c") to P. Meanwhile, V' computes
Q =a-Q1+0b-G.

. P receives (c’,c”) from V, decrypts it to obtain o = Decsx(c’), and

computes Q = a G. P sends ¢ = commlt(Q) to V.

. 'V decommits ¢, revealing (a,b).

. P checks that a = a -1 + b (over the integers). If not, it aborts. Else,
it decommits ¢é revealing Q.

5. Range-ZK proof: In parallel to the above, P proves in zero knowledge
that x1 € Zg, using the proof described in Appendix A.

V’s output: V accepts if and only if it accepts the range proof and Q =Q'.

31

#3 ZK Confusion

* Proof of correct Paillier Keypair:
o Rp={(N, (p1,p2)), N=p:°pzand pi,p2 are primes}

32

#3 ZK Confusion

* Proof of correct Paillier Keypair:
o Rp={(N, (p1,p2)), N=p:°pzand pi,p2 are primes}

* The author used zk proof from an old paper:

* Rp={(N,®(N)), ged((N,p(N)) = 1}

<Z

33

#3 ZK Confusion

* Proof of correct Paillier Keypair:
o Rp={(N, (p1,p2)), N=p:°pzand pi,p2 are primes}

* The author used zk proof from an old paper:

R'p = {(N,¢(N)), ged((N,@(N)) = 1}

e This two relation are not equivalent. i.e if N is a product of 3 distinct
primes of the same length

B .
AR
‘N

34

]

-
77\

'N

#3 ZK Confusion

* Proof of correct Paillier Keypair:
o Rp={(N, (p1,p2)), N=p:°pzand pi,p2 are primes}

* The author used zk proof from an old paper:

R'p = {(N,¢(N)), ged((N,@(N)) = 1}

e This two relation are not equivalent. i.e if N is a product of 3 distinct
primes of the same length

* This was fixed at a later version. Luckily, in this specific protocol R’ris
enough

35

#4 ZK Confusion

* Not to neglect other papers:

» [GG18] KeyGen is using an unnecessary proof of knowledge of
DLog

* [LNR18] zk Range proof protocol (6.2.5) is provided without a proof

36

#5 Work In P

8 versions in a span of 18
months

First version accepted to
Crypto17’

+7 pages difference between
first and last versions

Unlike GitHub, there is no
built in way to track changes

In the last version there was
an update replacing zkpok of
DLog with zero knowledge of
DH relation to enable
concurrent signing

rogress

Cryptology ePrint Archive: Report 2017/552

Available versions in chronological order

20170608:194335 (posted 08-Jun-2017 19:43:35 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017
20170613:073228 (posted 13-Jun-2017 07:32:28 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017
20171130:204840 (posted 30-Nov-2017 20:48:40 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017
20180801:100320 (posted 01-Aug-2018 10:03:20 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017
20180829:062821 (posted 29-Aug-2018 06:28:21 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017
20181008:113335 (posted 08-Oct-2018 11:33:35 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017
20181010:181855 (posted 10-Oct-2018 18:18:55 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017

©20181121:194904 (posted 21-Nov-2018 19:49:04 UTC)

Fast Secure Two-Party ECDSA Signing

Yehuda Lindell

Original publication (in the same form): IACR-CRYPTO-2017

37

<Z

#6 Baad Wa¥$ to
Achieve Efficiency

e Zk proofs are to avoid malicious adversary but what if we use
multiple devices of the same user: well in that case we can
assume that all parties are acting honest

« const paillierKeys = jspaillier.generateKeys(1024);

38

Good Ways to Achieve
Efficiency

<Z

<Z

Good Ways to Achieve
Efficiency

* |If a protocol is abstracting Zero Knowledge proofs, they can be

replaced with better version

40

<Z

Good Ways to Achieve
Efficiency

* |f a protocol is abstracting Zero Knowledge proofs, they can be
replaced with better version

* Some protocols are presented as a chain of separate sub-
protocols. Sometimes they can run in parallel instead of sequential.

41

<Z

Good Ways to Achieve
Efficiency

If a protocol is abstracting Zero Knowledge proofs, they can be
replaced with better version

* Some protocols are presented as a chain of separate sub-

protocols. Sometimes they can run in parallel instead of sequential.

e Trading stronger security assumption for efficiency

42

#7 Breaking a Threshold
Wallet

’s Breaking 2P-Rotation |

= ——

—————e——

Call 2P-Sign and broken 2P-Rot

SAL—

| Breaking 2P-KeyGen %!

—

2P-Rotation

$ Party1

i
J
i
{

Lo

Coin flip } |

Q’1=(X1+I’) - GG
Q’=Q Q'=Q

Ence(x1+ 1)

2P-Rotation zk-Paillier

* P1 Generates a new Paillier keypair (d',e’) and encrypt (x1 + r) into

Y
|
L

Ckey A= EnCe (X1+ 7—7

* P1 Proves in zero knowledge that c«ey 4 and ckey 5 encrypts the same
message X1+ r

45

2P-Rotation zk-Paillier

Meratesa newPallller keypair (d’,e’) and encrypt (x1 + r) into

|
L

* P1 Proves in zero knowledge that c«, 4 and ckey 5 €ncrypts the same
message X1+ I

* Problem: chosen zk proof works only if prover do not know
factorization & P1 can cheat ?

*Appendix A: https://www.iacr.org/archive/eurocrypt2000/1807/18070437-new.pdf

B .
AR
‘N

46

https://www.iacr.org/archive/eurocrypt2000/1807/18070437-new.pdf

smaller than some known value 2p-Sign will be |
|

valid, and invalid otherwise

Breaking 2P-Keygen

(*) Each “rotate”
should cancel the
coin flip r and add
a big number such
that verification
succeed if x> did
not invoke modulo
operation on
Paillier

47

#7 Mitigation

We suggested that if the purpose is to skip the entire 2P-Keygen
there is a general purpose for the zk proof (https://eprint.iacr.org/

2016/583.pdf)

In Practice, Re-run of 2p-keygen it is:

We thank Omer Shlomovits, Li Lin and Claudio Orlandi for reporting a
vulnerability in our refresh procedure on February 10 2019. This has
been fixed in the open source in this update by rerunning the Paillier
ciphertext generation procedure used in key generation in every

refresh.

48

But What If | MIUST
have a threshold wallet

<Z

But What If | MUST
have a threshold wallet

* Understand what guarantees you get from the cryptography, what are the
limits and the risks

* Map your security assumptions - try to minimise them as much as possible
In comparison to the entire system

* Assume attacker has infinite resources and can do whatever she wants

<Z 5

And more:

Z

But What If | MUST
have a threshold wallet

* Understand what guarantees you get from the cryptography, what are the
limits and the risks

* Map your security assumptions - try to minimise them as much as possible
In comparison to the entire system

* Assume attacker has infinite resources and can do whatever she wants

51

Summary

This talk was focused on the pitfalls of using threshold ECDSA in building new
J * generation of SW wallets.

Yay, Threshold Wallet!

- What can go wrong?

A | don’t care. | want it!

Z

62

Questions?

a https://t.me/kzen_research O https://github.com/KZen-networks

63

https://t.me/kzen_research
https://github.com/KZen-networks

