
Omer Shlomovits

Cryptographic
Vulnerabilities in
Threshold Wallets

�1

This talk is focused on the pitfalls of using threshold ECDSA in building new
generation of SW wallets.

Outline

!2

Yay, Threshold Wallet!

I don’t care. I want it!

What can go wrong?

• Client software used as a gateway and means of interaction with a
blockchain

• Among other responsibilities, the Client software must play a critical
cryptographic role of generating digital signatures

A Wallet

!3

Threshold Signatures

!4

 (t,n)-threshold signature scheme distributes signing power to n parties
such that any group of at least t parties can generate a signature

Threshold Signatures

!5

 (t,n)-threshold signature scheme distributes signing power to n parties
such that any group of at least t parties can generate a signature

(2,3) - Keygen

xc,Q

xi,Q

xs,Q

Threshold Signatures

!6

 (t,n)-threshold signature scheme distributes signing power to n parties
such that any group of at least t parties can generate a signature

(2,3) - Signing

xc,Q, tx

xi,Q, tx

xs,Q

Threshold ECDSA

!7

https://github.com/KZen-networks/multi-party-ecdsa

Assumptions KeyGen Sign

[L17] ECDSA, Paillier Seconds milliseconds

[GG18] ECDSA, Strong RSA milliseconds milliseconds

[DKLS18] ECDSA milliseconds milliseconds

[LNR18] ECDSA, DDH Seconds milliseconds

https://github.com/KZen-networks/multi-party-ecdsa

Threshold ECDSA

!8

https://github.com/KZen-networks/multi-party-ecdsa

• Annoyingly they all came out at the same time so none contains a
comparison to the others

Assumptions KeyGen Sign

[L17] ECDSA, Paillier Seconds milliseconds

[GG18] ECDSA, Strong RSA milliseconds milliseconds

[DKLS18] ECDSA milliseconds milliseconds

[LNR18] ECDSA, DDH Seconds milliseconds

https://github.com/KZen-networks/multi-party-ecdsa

Threshold ECDSA

!9

https://github.com/KZen-networks/multi-party-ecdsa

Assumptions KeyGen Sign

[L17] ECDSA, Paillier Seconds milliseconds

[GG18] ECDSA, Strong RSA milliseconds milliseconds

[DKLS18] ECDSA milliseconds milliseconds

[LNR18] ECDSA, DDH Seconds milliseconds

• Annoyingly they all came out at the same time so none contains a
comparison to the others

• Does efficient threshold signing ➡ efficient threshold wallet ?

https://github.com/KZen-networks/multi-party-ecdsa

Threshold Wallet

!10

• Distributed key generation (DKG)
• Distributed Signing
• Secret Share Recovery
• Deterministic Child Address Derivation
• Rotation

Described by the following tuple of 5 algorithms

Ref: https://github.com/KZen-networks/gotham-city

https://github.com/KZen-networks/gotham-city

• Access policy privacy

• Secret refreshment

• Low cost

• Max number of parties

• Other differences:

• Number of rounds

• Chain support

ThresholdSig > MultiSig?

!11

A MultiSig is an Emulation of ThresholdSig

Threshold Wallet -
System

!12

• Distributed network layer
• Who are the n parties?
• Do all parties have to run a full node?
• Can we obtain privacy between signing parties?
• Can we translate BIP32 to multi-party ?
• Single key system and multi-party KMS cannot co-exist

Focus

!13

Threshold Wallet System

Threshold Signatures

Implementation

Focus

!14

Threshold Wallet System

Threshold Signatures

Implementation

• We take [L17] as a study case:
• easier to explain
• old enough to be implemented by several projects

ECDSA

!15

• EC public parameters : q,G
• Choose Random k
• Compute R = k • G
• Compute r = rx mod q where R = (rx,ry)
• Compute s = k-1 • (H(m)+ r • x) mod q

where x is the private key
• Output (r,s)

Lindell 2P-KeyGen

!16

!17

Lindell 2P-Signing

2P-Keygen [L17]

!18

Party1

Q1 = x1 • G
Party2

Q1

Q2

Q2 = x2 • G

Ence(x1)

Q = Q1 +Q2

The protocol promises: (1) Privacy, (2) Correctness

Q = Q1 +Q2

2P-Signing [L17]

!19

Party1

R1 = k1 • G
Party2

R1

R2

R2 = k2 • G

s’ =
Ence(m’ / k2) ⊞

Ence(x1)⊙Ence(x2 •r / k2)

R = k1 • R R = k2 • R1

Signing message m: m’ = Hash(m)

s’
s = Decd(s’)/k1

Output: 𝞂 = (s, r), s.t. Verify(𝞂, Q, m’) = 1

The protocol promises: (1) Completeness (2) Consistency (3) Unforgeability

Paillier CryptoSystem

!20

Paillier is additively homomorphic public key encryption scheme

• Homomorphic addition of plaintexts: Decd(Ence(a) ⊞ Ence(b)) = a + b
• Homomorphic multiplication by scalar: Decd(Ence(a)⊙k) = a•k

Paillier CryptoSystem

!21

• Zero-knowledge proofs (https://github.com/KZen-networks/zk-paillier):
• Proof of correct key generation (d,e)
• Range proof (r): c = Ence(a), a < r
• Proof that two ciphertexts encrypts the same message : c1 =

Ence1(a), c2 = Ence2(b), b == a
• …

Paillier is additively homomorphic public key encryption scheme

• Homomorphic addition of plaintexts: Decd(Ence(a) ⊞ Ence(b)) = a + b
• Homomorphic multiplication by scalar: Decd(Ence(a)⊙k) = a•k

https://github.com/KZen-networks/zk-paillier

Getting Dirty

!22

• All examples were found in the wild

• Most of them in our multi-party-ECDSA code:
• https://github.com/KZen-networks/multi-party-ecdsa

• All other important issues were reported and fixed

https://github.com/KZen-networks/multi-party-ecdsa

DO NOT OPTIMIZE #1

!23

P1 P2

com(Q1)

Q2

Q1 = decom(Q1)

.

.

.

DO NOT OPTIMIZE #1

!24

P1 P2
com(Q1)

Q2

.

.

.

Q1 = decom(Q1)

#1 DO NOT OPTIMIZE

!25

P1 P2
com(Q1)

Q2

.

.

.

Q1 = decom(Q1)
P1 P2

Q2

.

.

.

Q1

#1 DO NOT OPTIMIZE

!26

P1 P2
com(Q1)

Q2

.

.

.

Q1 = decom(Q1)
P1 P2

Q2

.

.

.

Q1

Rogue Key Attack (https://eprint.iacr.org/2018/068.pdf): Q2 = Q - Q1

https://eprint.iacr.org/2018/068.pdf

!27

#2 DO NOT OPTIMIZE

#2 DO NOT OPTIMIZE

!28

DLog PoK

DLog PoK

Correct Paillier
Key Generation

Paillier-DLog
proof

DO NOT OPTIMIZE #2

!29

Hey!
ZK proofs can be removed and
code still works!

[ZK in MPC]

!30

• Zero knowledge proofs hold 3 properties: Completeness, Soundness
and Zero-Knowledge
• MPC (at least here) uses ZK as part of security proof to protect against

Malicious adversaries
• This mean that removing/changing the ZK proof will break the security

proof

Broken security proof does not always lead to immediate attack

#2 DO NOT OPTIMIZE

!31

• In KZen implementation of Lindell 2P-KeyGen we neglected LPDL. (to
our defence we did integrate the Paillier range proof)

#3 ZK Confusion

!32

• Proof of correct Paillier Keypair:
• RP = {(N, (p1,p2)), N = p1 • p2 and p1,p2 are primes}

#3 ZK Confusion

!33

• Proof of correct Paillier Keypair:
• RP = {(N, (p1,p2)), N = p1 • p2 and p1,p2 are primes}

• The author used zk proof from an old paper:
• R’P = {(N,ɸ(N)), gcd((N,ɸ(N)) = 1}

#3 ZK Confusion

!34

• Proof of correct Paillier Keypair:
• RP = {(N, (p1,p2)), N = p1 • p2 and p1,p2 are primes}

• The author used zk proof from an old paper:
• R’P = {(N,ɸ(N)), gcd((N,ɸ(N)) = 1}

• This two relation are not equivalent. i.e if N is a product of 3 distinct
primes of the same length

#3 ZK Confusion

!35

• Proof of correct Paillier Keypair:
• RP = {(N, (p1,p2)), N = p1 • p2 and p1,p2 are primes}

• The author used zk proof from an old paper:
• R’P = {(N,ɸ(N)), gcd((N,ɸ(N)) = 1}

• This two relation are not equivalent. i.e if N is a product of 3 distinct
primes of the same length

• This was fixed at a later version. Luckily, in this specific protocol R’P is
enough

#4 ZK Confusion

!36

• Not to neglect other papers:

• [GG18] KeyGen is using an unnecessary proof of knowledge of
DLog

• [LNR18] zk Range proof protocol (6.2.5) is provided without a proof

#5 Work In Progress

!37

• 8 versions in a span of 18
months

• First version accepted to
Crypto17’

• +7 pages difference between
first and last versions

• Unlike GitHub, there is no
built in way to track changes

• In the last version there was
an update replacing zkpok of
DLog with zero knowledge of
DH relation to enable
concurrent signing

#6 Bad Ways to
Achieve Efficiency

!38

• Zk proofs are to avoid malicious adversary but what if we use
multiple devices of the same user: well in that case we can
assume that all parties are acting honest

•

Good Ways to Achieve
Efficiency

!39

Good Ways to Achieve
Efficiency

!40

• If a protocol is abstracting Zero Knowledge proofs, they can be
replaced with better version

Good Ways to Achieve
Efficiency

!41

• If a protocol is abstracting Zero Knowledge proofs, they can be
replaced with better version

• Some protocols are presented as a chain of separate sub-
protocols. Sometimes they can run in parallel instead of sequential.

Good Ways to Achieve
Efficiency

!42

• If a protocol is abstracting Zero Knowledge proofs, they can be
replaced with better version

• Some protocols are presented as a chain of separate sub-
protocols. Sometimes they can run in parallel instead of sequential.

• Trading stronger security assumption for efficiency

#7 Breaking a Threshold
Wallet

!43

Breaking 2P-Rotation

Call 2P-Sign and broken 2P-Rotation many times

Breaking 2P-KeyGen

2P-Rotation

!44

Party1

Q’1 = (x1 + r) • G

Party2

Ence’(x1 + r)

Q’ = Q

Coin flipr r

Q’2 = (x2 - r) • G

Q’ = Q

!45

• P1 Generates a new Paillier keypair (d’,e’) and encrypt (x1 + r) into
ckey_A = Ence’ (x1 + r)

• P2 homomorphically adds r to Ence(x1):
ckey_B = Ence(x1) ⊞ r

• P1 Proves in zero knowledge that ckey_A and ckey_B encrypts the same
message x1 + r

2P-Rotation zk-Paillier

2P-Rotation zk-Paillier

!46

• P1 Generates a new Paillier keypair (d’,e’) and encrypt (x1 + r) into
ckey_A = Ence’ (x1 + r)

• P2 homomorphically adds r to Ence(x1):
ckey_B = Ence(x1) ⊞ r

• P1 Proves in zero knowledge that ckey_A and ckey_B encrypts the same
message x1 + r

• Problem: chosen zk proof works only if prover do not know
factorization ➡ P1 can cheat ?

*Appendix A: https://www.iacr.org/archive/eurocrypt2000/1807/18070437-new.pdf

https://www.iacr.org/archive/eurocrypt2000/1807/18070437-new.pdf

Breaking 2P-Keygen

!47

(*)Find way for P1 to rotate to any value

Rotate to unknown range such that if x2 is
smaller than some known value 2p-Sign will be

valid, and invalid otherwise

Collect a constraint of the value of x2

x2

(*) Each “rotate”
should cancel the
coin flip r and add
a big number such
that verification
succeed if x2 did
not invoke modulo
operation on
Paillier

#7 Mitigation

!48

• We suggested that if the purpose is to skip the entire 2P-Keygen
there is a general purpose for the zk proof (https://eprint.iacr.org/
2016/583.pdf)

• In Practice, Re-run of 2p-keygen it is:

We thank Omer Shlomovits, Li Lin and Claudio Orlandi for reporting a
vulnerability in our refresh procedure on February 10 2019. This has
been fixed in the open source in this update by rerunning the Paillier
ciphertext generation procedure used in key generation in every
refresh.

But What If I MUST
have a threshold wallet

!49

But What If I MUST
have a threshold wallet

!50

• Understand what guarantees you get from the cryptography, what are the
limits and the risks

• Map your security assumptions - try to minimise them as much as possible
in comparison to the entire system

• Assume attacker has infinite resources and can do whatever she wants

But What If I MUST
have a threshold wallet

!51

• Understand what guarantees you get from the cryptography, what are the
limits and the risks

• Map your security assumptions - try to minimise them as much as possible
in comparison to the entire system

• Assume attacker has infinite resources and can do whatever she wants

• Hire a cryptographer
• Education, adversarial thinking, specifically for devs
• Cryptographic audits
• Battle test your code
• Programming language (e.g. Rust)
• Formal Verification

And more:

This talk was focused on the pitfalls of using threshold ECDSA in building new
generation of SW wallets.

Summary

!52

Yay, Threshold Wallet!

I don’t care. I want it!

What can go wrong?

Questions?

!53

When Schnorr?

https://t.me/kzen_research https://github.com/KZen-networks

https://t.me/kzen_research
https://github.com/KZen-networks

